Oracle Berkeley DB

Berkeley DB
API Reference
for C

Release 4.8

ORACLE
BERKELEY DR

Legal Notice

This documentation is distributed under an open source license. You may review the terms of this license at:
http://www.oracle.com/technology/software/products/berkeley-db/htdocs/oslicense.html

Oracle, Berkeley DB, and Sleepycat are trademarks or registered trademarks of Oracle. All rights to these marks are reserved. No third-party
use is permitted without the express prior written consent of Oracle.

To obtain a copy of this document's original source code, please submit a request to the Oracle Technology Network forum at:
http://forums.oracle.com/forums/forum.jspa?forum|D=271

Published 4/12/2010

http://www.oracle.com/technology/software/products/berkeley-db/htdocs/oslicense.html
http://forums.oracle.com/forums/forum.jspa?forumID=271

Table of Contents

o 1 =Tl X
1. Introduction 0 Berkeley DB APIS ..uciiiiiiiettiiiiiiietieeeiieeeeeeeenaeeeeeeessnseseesessnnsessesannnes 1
2. TRE DB HANALE ...eneeiiitiiiitt i te et e ettt et re et s e e eeeneesenaeeranneesannesennnesennnesannessnnes 2
Database and Related Methodsc.urereeiiiiiiiiiii it eeer e et eeeneeseennerannnens 3
DB->aSSOCTATE() teverrrrrererreereereereeeseeeeeeseseesessossnssosnsnnnsnnsssssnssssnnnssnssssssssssesnssneenes 5
DB->asS0CIAte_fOr@IGN() uvveeeererinueeeereerineeeeeeeenneeeeeesssaseeeesssnsseseesessnnssssesssnnnnsssees 9
D] R ol (o =] PP 12
(a0 T ol 1= L P 14
(D] b ole] 1] Y- ot o) H PPN 16
5 R = P 19
DB ->EIT() teeeunneeeeeeenrnueeeeeeesnaeeeeeeessnsesessessnsasessessnnnsessessnnsnsssssssnnnssseessnnnssssessnns 22
DB->EXISTS() weeeerernuuereeeeeeruueeeeeessuneeeeeesennasessessnnsssesesssnssssssesssnnssssssessnnnnsssessnnnes 24
35 R e T 26
DB->GOE() vuvveeeereeeuueeeeeeenueeeeeesssnaseeeeeesnsesessessnnssesssesnnsnssssessnnnsessssssnnnsssscssnnns 27
DB->get_ Dt MINKEY() turvrteteieiiittttieeiiieteeteeeneeeeeeeennaeeeeesesnnsssessessnnanessessnnnnsssens 32
DB->get_DyteSWaPPEA() teerreretteeriieeteeeeiieeeeeeeeraeeeeeeessnneseesesssnssessessnnnsssssesannnnes 33
DS o) il of- Lol <1 4= PP 34
DB->et_Create_dilr() vueeeeeeeeireeeeeeeennueeeeeeenrueeeeeeessnnaseceessnnasesessssnnsssssesesnnssssseenns 35
DB->get_ADNAME() teirrttttiieiiiitttteeiiiteeeeeeeraeeeeeeesnneeeeesessnnanessessnnnassssessnnnsnseenns 36
DB->get_eNCIYPL_flags() coueeeeeeeeriiueeeeeeeiieeeeereerrneeeeeeeernseeseeessnnnssssessnnnssssessnnnnnnes 37
D] o < o o 1 U= PPN 38
DB->GEt_EITPTX() tuveeeeeeerinereeeeeereeeeeeessneeeeeesesnnseeeeessnnsssessessnnnsesssssnnnssssessnnnnes 39
Do - T] P PP 40
[D1S R Tl T i - Tt o] o R P P PP PPN 41
Dol I 1= =T 11 1 PP PP PP PP 42
Dol Vo] e [T () PP 43
D] Rl 1 14 1 C=T PP 44
DB->Get MULTIPLE() tenrueettereiiettereeiieteeeeeeiaeeeeeesennaeeeeesesnnsesessessnnanesssssnnnnssssanns 45
DB->get_OPEN_flagS() «eeeeeeernueeeereriieeeeeeserrueeeeeeesssaseeesessnssesessessnsessssessnnnsssessnnnns 46
DB->get_partition_CallbDacK() c.veeeeereriiueeeeieiiiitetiieeiiieeeeeerieeeeeeeenrnneseeressnnanessasanns 47
DB->get_partitioN_dirS() teeeeeeeeereerneeeererereeeeeeeenneeeeeesssaseseesssnnsssssssssnnsssesesannnes 48
DB->get_partitioN_KEYS() weeeeeeeeriureeeereriiueteereerineeeeeessnnneeeseessnsasessesssnnssssssennnnnneens 49
DB->GEt_PAZESIZE() +evverennneeeeeeenueeeeeeesrnneeeeressnneseseessnnnssssssssnnnsssssssnnsnsssesssnnnnnes 50
DB->8ET_PriOFEY() cuueerrrrrnennennennenneeeeeenseeseeneeneeeseeseessessssssssessssssssssssssssssssenns 51
DB->get__@XEENESIZE() teverrretttreniiiteeereeiieeeeeeeesnneeeeeeessnseseesessnnasesessssnnnssssesannns 52
D] ol (e (=111 | P P PP 53
D] o (T (=] PP 54
DB->GEt_FE_PAA() +eveerereruneeeeeeninueeeeeeeraeeeeesessnseeeesesonsssseesssssssssssssnnsssssessnnnneees 55
DB->GEt M€ _SOUIMCE() teeennrureeeeeennuueeeeeessueseseesensssesessssnnsseseessnnasssssssnnnssssesssnnnnneens 56
DB->GET_TYPE() wevveeeeeneereereereeeeeeeeeeeeseeseeesessssssssssssssssssssssssssessssssssssssssssnssnnnnnnes 57
35 Ry o)1 58
DB->KEY _TANGE() teeerrreeeeeeenneeeeeeeerreeeeeesessuseseeeessnnsssssesssnnssessessnnnsssssssssnnsssssesnnns 61
DB->0PEN() uvtetteeeiuneeeeeeesueeeeeeeesueeeeeeessnsasesesssnnssssssessnnsssssesssnnssssssessnnsssssesnnns 63
DB->PUL() tenvteeneerenterentereneeeeaneerennnerenneesanneseannesennnesennsssennesesnnesennnesennnseonnesns 68
DB->TEMIOVE() veteereeennueeeeeeenrnaeeeeesessnseeeseesennasssessssnnssessessnnassssssssnnnsssessssnnnnsssens 72
D] R 1 =10 1 = 74
4/12/2010 DB C API Page ii

B3 Yy - 1 (o T [TP PPN 76

DB->Set_apPPeNd_TECN0O() «eeureteenuteeenuteeaneeeeeneeeesneeessneeesaseesnssessnssessnesessaseesnnsssnnnes 78
DB->Set_Dt_COMPArE() veveuetieintiriietieeiteeeneeeerneeeeneeeesneeessneeeesneeesnaseesnneessneeesnnnens 80
DB->SEt_DT_COMPIESS() cuvternttiennetrennterereteeaeeeerneeeenaeeesneeeesneesesneeesnnseesnsssesneseennes 82
DB->Set_Dt_MINKEY() teuetiiiiniiiiieiiiittieitieiietteieerenaeeeeneeeesneeeeraeeesneeessnesssnnesssnnens 85
D)5 el ol 1 (=) i (I PP PP PO 86
D] Yy Wl oF- Vel =T 2= () Pt 88
D] R o (=T LI« | 90
DB->Set_dUP_COMPAE() uueeeenuteeenueeenueeeenneeeesueeeeneeeesnseeesneeesnseesnsesesnssesnnnsesnnseans 91
DB->SEt_ENCIYPE() ceueeeerriaaneeereennnneesseesanneeseeesanneessesssnnnessssossansssssesssansesssessanns 93
B3 Ry Y A =T o ot | U TN 94
B3 Yy =T o o i 1 U= T 96
DB->SEE_EITPIX() v eeenuteenuueeenneeeenneeeenueeesneeeesneeeenneeesnsseesnsseesnseessnssesnnssssnssesnnneenns 98
D] Yy Ml (= Te oY ol (S 99
DB->SEE_flagS() veveureeeeneeeenueerenueeeeneeeesneeeesueeeesaeeesneeeesneesennsessnneeesnessesnsesennseennes 101
DB->SEt_N_COMPATE() «veeenntterintieiieteeieeeeinteeeieeeeeneeeesneeessneeessaseesnsesesnesessnesssnnes 107
B3 Yyl T i i T o o T PPN 109
3] Yyl T T T o1 T 110
3] Yyl T =] =T o 1 T 111
B3 Yy Wl Vo] e [T o TN 112
DB->SEt_MSZGCALL() teerrnterrnetieitereieteereeeerneereraeeeeneeeesneeeonaeesonaeessneessnnssssnnessnnees 113
DB->SEt_MSGIILE() teurterentierttieiitteeiteeereteeeteeeanteeenneeesneeeesneeeenneeesnnseesnsesennseenns 115
DB->SEt_PAZESTZE() tevrunretrreanneeereeessaneeeseessnnneesseessannesssessannsessessssnnassssasnnnaesss 116
DB->S@t_PartitionN() «eeeeeeeneeerrerrieterreeniantetreeannneeeseesnasessssesnansesssessansasssessnnaes 117
DB->Set_PartitionN_dirS() ceeeeeeeeeeerereteereeeenneerereeereeeeesneeeesaeeeoneeeesneeessasssonasesnneens 119
(D] Al o] o o] o 1Y/ (I PP 120
DB->Set__@XEENESIZE() tuuuerttrreiiintetieeeiiteeeteenaiaeeeeseensaneeessessnansesssessannsessessnnnes 121
DB->SEt € _AELIMI() tuuttetiiiiiitt ittt eeeiiteeeeeeaanaaeeeeeasnnaseeesensnnseessesennsseseeennns 122
3] Yy Ml T (= Y T P 123
D) e Al (I o - Lo [PP 124
B>t M@ SOUICE() +eeeeeereeeeeeeeeeeeeeeeeeeeeeeeeeseeseesssesnnnnnsnsnsssssssssssssssssssssssssssnssnes 125
DB->STAT() 4uvuvrrnneeneeeeereeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeesesssssesessssssssnnsnnnsnnsnnnnnnnsnnnnns 127
DB->Stat _PriNT() «eeeeeennneeereenreeeereennneeeeeeesnneesseesnnneesssessannsessesssannesssessannassses 134
D5 R o U 135
D] R U g Vot Y =T (Pt 137
DB->UPZGIAdE() «veeeenuteenueeeenueeeenueeeeneeeesneeeesneeesnneeesnsssesnsesennssesnnssesnsssesnssesnnsaenns 139
DB > VORI Y () 4eeenuteenneeeenneeeenueeeeneeeeaneeeesneeeenaeeesnessesnseessneeessnneesnnssesnnsessneeesnneens 141
3. The DBCUISOr Handle ..uiinueiiiiiiiiitiiiitieiteeeeeeeenaeeeeeeeanneeeennneeenneeesnsssesneeesnnneenns 144
Database Cursors and Related Methodsoviiiiiiiiiiiiiiiiii it eeenas 145
B> CUISOI () teeeettteteeeeeeeeeeeeeeeeeeeeeeeeeeseeeeeeeeeeeessessssnsnssnnnnnssnssssssssssssssssssssnnnnnes 146
DBCUISOT=>ClOSE() vveeeeeennnueeeeeeeeiueeeeeeeseneeeeeesensseseeessnsssessesessssesesessnnsseseeennnnes 148
DBCUISOr=>CIMP() «eveeteennnaneeeesennnneeesseesanneessesssnnsessesassnnsssssessnnnsssssessannasssesssnnnes 149
D] Lol U] T et oo [| o Pt 151
B3 Tl [Yo e [U T PP 152
DBCUISOT=>AUP() vveennnteennueeenueeeenuneeenaeeesneeeesnesesnseesnaesesnsssssnseessnssessassesnnssssnnens 154
DBCUISOr=>GEE() teeennuneterrenrneterreenanneeseeennneessesasnnnessssesnnsesssesssansesssessannssssanns 156
DBCUIrSOr=->get_PriOrity() «oeeerneeetreeeiineeereenrneeeereesnneesseesanneessesssnnsessesossnnessssanes 164
DBCUISOr=>PUL() «eveerrennnueeesreeeanneeseeesnnneesseessnnnessssassansssssesssansesssessannsessesssnnnasss 165
DBCUISOr=>SEE_PriOritY() «ueeeeeereernetetrerernnneeeeeeneaneeessessaneeessessnansessssossnnsessssssnnnes 169

4/12/2010

DB C API Page iii

S I T B 3 I = = U T | 170

DBT and Bulk Operations ...e.ueeeeeueeeereteeeneeeenueeeenueeesneeeesneeeesneeesnnseesnsssssnseesnnneenns 173
DB MULT I PLE _INIT eetttieittieitteeieteeeeeeeaneeeenneeeeneeesneesesneesssneeesnnssesnassesnneesnnnens 174
DB _MULTIPLE _NEXT .uttiiiutteeiuteeeeeeenneeeenneeeenneeesneseesnsesesnseesnnssesnnssssnnssssnseesnneens 175
DB_MULTIPLE_KEY _NEXT .uttiittieeuttenneeeenueeeenneeeseeeesneeeesnseessnssesnnsessnassssnseesnneens 176
DB_MULTIPLE _RECNO _NEXT 1iiuttiittiittiiteeeeetatetiteenseeaseensesnsesnsesseensesnsesnsesnssanaenns 177
DB _MULTIPLE _WRITE _INIT tettittiittiittiit it eetetitetaeeeneeeneeenseaaeaeeensesnaesnsesnaeanaenns 178
DB _MULTIPLE _WRITE _NEXT ttttiitiitiettaeeateateereeaeeaneeaneeeseeesesasesesesasesnseenneenes 179
DB _MULTIPLE _RESERVE _NEXT 1utiiiitiiitiitiiteetetatetiteeaeeeneeenseeneesseeaeensesnseenaennaens 180
DB_MULTIPLE_KEY _WRITE _NEXT .ttiiutiitiiitieitiiitieteeeeeeeeeeaeeaseeaseeaserasesnsesnneenes 181
DB_MULTIPLE_KEY _RESERVE _INEXT ..iiutiittiitiittiittiiteraeeeneeenseensesnseeseessesneeenaennaens 182
DB_MULTIPLE_RECNO _WRITE _INIT 1 \tiittiitiitii it ee et et eiteeeeeeeeeensernaeenaeenseensenn 183
DB_MULTIPLE_RECNO _WRITE _NEXT 1iiuttiittiittiittiiteiiteentetnterisernseenseensesnsesnseenseansenn 184
DB_MULTIPLE_RECNO _RESERVE _NEXT .uutiittiitiitiettietiaeeaerateraseenseensernsesnsesnseennens 185
5. The DB_ENV Handle .iiuuiiiiitiiiiiiiitieiiteeeteeeneeeaeeeeaeeeasneeesnneeesnneessnnsessnneesnnees 186
Database Environments and Related Methodsccuviviiiiiiiiiiiiiiiiiiiii e, 187
DB->GOt ENV() teruetttirieeiattettteeieteeseeesanneeeseesnnnneesssessanssessesssansesssssssnnssssssssnnnes 189
DB_ENV->add_data_dir() ceeeeeeeeeereiiieteeieiiiieeeetieanieeeeeeeeiiseeeeeeesssseseeeessnssseseeennns 190
DB _ENV-2ClOSE() tevunutettteeiineeeteeeaieeeeeeeeaaeeeeeeeansseseeeessseeseeessnsssssesesnssssesanes 192
oo I = Aol (=T L < PP 194
DB _ENV->ADIremMOVE() tetiiiiiitttiiiiiiittttteeiiieteteeeaieeeeeteassseeesessnsssssesesnssesseennnnns 195
DB _ENV->AdbIrENamME() vveitiiiiiittetiiiiiieeeteeeiieeeeteeeaaeeeeetessnsssessesesnssesesenssnsesseenns 197
B N =Ty o PP PP 199
DB_ENV->failChK() teuueeeeetieitiiiiitiieiteeiieteeaeeeennteeeneeeesneeeesneeesnneeesnsesesnseeenneaens 201
B I o N AV 1= o B =1 = o P 203
DB_ENV->8et_Creat@_dir() ceeeeereeeereerenueerereeeesneeeesneerenaeeesneeeesneesesneeesnseessneesannes 204
DB_ENV->get_data_dilrS() «veeeueeeeeneeeenueeeeneeeesueeesneeeesneeeenueeesnsesesnseessnsessnassesnsesns 205
DB_ENV->get_enCrypPt_flags() «eueeeereeeeereeeenieeeenueeeenueeeaneeeesneeessneeesnaesesnaeessnneesnneens 206
DB_ENV->8Et_ITIlE() tuvtrerutiriietiriittieitereneteereereeneeresaeeeeneeeesneesennsesenneeesnsesannes 207
DB_ENV->GEE_EITPIX() +teeenuteerueteenueeeenueeeenueeeseeeesneeessneeesnaeeesnaeessnssessnssesnassssnnes 208
DB_ENV->8Et_flagS() teeveeeernetrenueerenueeerueeeesneerenueeeeeeeesneesesneeeenaseesnsssesnsssannseennes 209
DB_ENV->8t_NOME() tuttiiintiieinttriietiertetenneereneeeeaneeeesneeresneersnneeesnsssennessennseennes 210
DB_ENV->get_intermediate_dir_mMode() ...ceveeeeiutiriietireietieiteeeneeeeeneeeesneeeenneeeenaeenns 211
DB_ENV->8et_MSGFIlE() tuvterrnttieitiriitieeiteeeieeeeateeennteeeneeeesneeeesnneesnseesnaesennnsenns 212
DB_ENV->get_OPeN_flags() «eeeeereererueerereteerietrenuterereeeesneeeesneesonaeessneeessneeesnnssssneens 213
DB_ENV->8Et_ShM_KEY () teuvteernttieittreiteeeieteeaieeeeneeeenneeesneeeesneeessneeessnesesnaessonnens 214
DB_ENV->get_thread_COoUNt() vuueeeieeirrieiieiieiiteiieeeeteeeneteeaneeeeaneeeesneeesnaeeesnneenns 215
DB_ENV->8t_tiMEOUL() uuuvrrerrierintetrteeieteereeananeeeeeennaeeesssessannaessesssnnsesssennnnns 216
DB_ENV->8et_tMP_diN() veeeuetirieiiiiteiaieteeneerenterenneeeaneeeesneeeenneessnneeesnsessnneesannes 217
DB_ENV->8Et_VEIDOSE() teuueteenutieeeteeieeeeneeeenneeeenueeesneeeesneeessneeessaesesaeessneeesnneens 218
B I 2 N A 1 o T (ST =1 | (PP 220
DB_ENV-2>0PEN() uvtttreeennneeeteenaaneeessesaneeessessannesssessnnsessessssansssssessansassssessanns 222
DB_ENV->T@MOVE() uuurntnneeeeeeeeeeesssesesesseessesesesseeseseeseseeeeeseessessessesssssaanns 227
DB _ENV->SEE_allOC() tevientttttieiiiitteieieiiteeeteeeaieeeeeeeanneeeeeesesnsseeeeeessnsssseeeannnnes 229
DB_ENV->set_app_diSPatCh() .ueeeeetiiiiuiieiitiiiitiiiieeiteeeieeeeaeeeenneeeenaeeesnsesenneaens 231
DB_ENV->Set_data_dir() «veeeeeeriieeeiiieiiieeeteeiiieeeeteeaiseeeeeeessnseeeeesessseseeeensnnsseees 233
DB_ENV->Set_Create_dir() «veeereeetieeeiieeeeteeiiieeeeteeeaineeeeeeensnnseeseesesnssesesensnseeesenns 235
DB_ENV->S@E_ENCIYPE() teuvretrrrenineterreennanteereenraneeessesasnnessssasannsessssassansasssessnnnnes 236
DB_ENV->Set_eVent_NOTITY() «eeeeretiernetierteraietierieeeenneereneeeesneeeesneeresaeeesnsseesnessannes 238

4/12/2010

DB C API Page iv

B I o N A =Y o et=1 L (PP 241

B I o N N L = o o 1 C= TS 243
DB_ENV->SEt_EITPIX() teutteeneerenueerenueeenueeeesueeeenaeeesnaeeesneesesnssssnssessnsssesnsssennsessnes 245
DB_ENV->Set_fEEADACK() tttveeiitttttiiiiittettieiiiteeeeteaaieeeeteeaiaeeeeeeessnsssesesssnnseseeeen 246
DB_ENV->SEt_flagS() «uveeenueeeenueeeenueeenneeeeseeeesueeesueeesneeessneeessneeessassesnnssssnseesnneens 248
DB_ENV->set_intermediate_dir_mMode() «.ooeeeeiiiiiiiiiiiiiiiiiiieiiiieeeeeiieeeeeeeannnnes 254
DB_ENV->SEE_iSALIVE() tuvvetttreiinetetieiiiieteeteeaiieeeeteeatseeeeeeessnseseseessnnsssseesnnnnseseenn 256
DB_ENV->S€t_MSZGCALL() tuuvtrennteernteeetteenuteeenuteeaaeeeaneeeesneeeenneeesnseeesnsesennseesnneeans 258
DB_ENV->Set_MSGFIlE() veeerttriintirriuteenieeeeieeeeineeeenaeeeseeeesneeessneeesnaesesnaeessnaeesnnees 259
DB_ENV->Set_ShIM_KEY () +eeerttteintiriietienttteitereneteeaeeeenneeeesaeeesnseeesnessennsesonnseennes 260
DB_ENV->Set_thread_COUNT() tiveeeietetiiiiiiietiieiiieeeteeeiieeeeeeeaainseeeeeensnnseeeeennnnnnes 262
DB_ENV->Set_thread_id() cveeeeeeiiieeeiiieiiiitieiiiietteeeiieeeeeeeaiaseeeeeessnsseeesensnnnseeens 264
DB_ENV->set_thread_id_StriNg() «c.eeeeeteeritieiitiiitieiteeeneeeeaneeeenneeesnneeesneesennaeenns 266
D B o N w3 =0T UL o (PP Pt 268
DB_ENV->S@t_tMP_AiN() ceveeeerntereinteenieteeeeeeenuteeenueeesneeeesneeesnneeesnnesesnsssesnseesnnseens 270
DB _ENV->SE_VEIDOSE() teunrtttttteeiiuetetteeeiieeeeteeanineeeeeeessnsseeeesesnsessesessnnsesesensnnnnes 272
DB_ENV->STat_PriNt() teeeenunreerreeritetieeinieteeeeeenrnneeessessnaneesseessannesssessannsessessnnnnes 275
oo T =] o] S PP PO PP 276
oo =151 o] o H PP 277
6. The DB_LOCK Handle .uuuiiiiitiiiitieiitieeeeeeaeeeanneeeanaeeeseesesneeessneeesnnesesnasessnnesennnes 278
Locking Subsystem and Related Methodscccueiiiiiiiiiiiiiiiiiiiiieiieeieeeeeieeeanneeanns 279
DB_ENV->get_[K_CONTUICES() veeeurreeriuterreeerieeeeinteeaieeeeneeeesneeeenaeeesneeeesnasessneessnnees 280
DB_ENV->8et_IK_dELECT() tuuvererntirretieietreretereieeeenneerenaeeseneeeesneeessaeesonneessneeeennees 281
DB_ENV->get_[K_MaX_LOCKEIS() tuueererutieretieneerenueeeaneeeenneeresneeeenaeessneesenneesennseennes 282
DB_ENV->get_[K_MaX_LOCKS() «eeeuetieruterereternterereerenaeeeaneeeesneerenneeessaeessneessnneesannes 283
DB_ENV->get_[K_MaX_0DJECES() «eererrterrietiriietiiitiriietieieeraieeeeneeeesneeeesaeeesnneesnneens 284
DB_ENV->get_K_PartitionNS() «ueeeeeeeereeeenueeeenueeesneeeesneeeesueeesnaeeesnsesesnseessnseesnneeans 285
DB_ENV->Set_LK_CONTUCES() uvveeiiriiitteeiiiiiiitttieieiiiteeeeeeaieeeeeeenaneeeeeesannsseeeeennnnns 286
DB_ENV->Set_LK_AELECE() teeenrrtetieiiiitetteiaiiiteeeeeeiaieeeeteeeainseeeeeessnnsseesesesnsseseeennns 288
DB_ENV->Set_LK_MaX_LOCKEIS() vuveeetieriiettttiiiiieeetieeiiieeeeteeenaeeeeeeessnnseeeeeensnnseseenn 290
DB_ENV->Set_LK_MaX_LOCKS() tuurreetereniietetieeiiiteeetteaaieeeeteeeisseeeeeessnssseeessssnssseeeen 291
DB_ENV->set_IK_MaX_0DJECES() tevurererntireintiriieeeeittreinteeeneeeerneeeesneeeenneeesnaesesnneenns 292
DB_ENV->Set_IK_PartitionS() «eeeueeeeereerereeereneeeenneerenueeeeneeessneesesaeeesnaeessneeessnsessnnees 293
D] T = N |V o el e (=] (=Tt [294
DB_ENV->L0CK _GET() tuvvteennterenueeeneteenneeeenueeeereeeeeneeeesneeessneeesnassssnsesssnasessnssssnness 296
D) N o el [[[I PPN 299
DB_ENV->10CK_ i _fTrEE() +eveeinuttttieiiiitetitieiieeeteeeaiaeeeteeeaiasseeeeeesnsssessesesnssesseennns 300
DB_ENV->L0CK _PUL() +eureternetrennterereeteeeerenneereneeeesneeeesneesenaeessnseessneessnnsessnneesnnes 301
DB_ENV->10CK_STAT() +eeereeenntetieiiiiteetteeiiieeeeteeeaieeeeeeeensnneeeesensnnsesesesesnssesseennnnes 302
DB_ENV->10CK_Stat_Print() veeeeueeeerueerereeeereeeenneereneeeesneeessneesesaeessneeessnesesnnsessnnees 307
DB_ENV->10CK_VEC() +eeteeeninutttteeeiiteeeeeeaiseeeeteessseeeseseusseseeeesnseseeeessnsssssessnnnnes 309
7. The DB_LSN Handle ..cuuuiiiitiiiiiiiiiitieiitteeieeeeaeeeanaeeeenaeeasneeesneeesnneeesnasessnneennnnes 313
Logging Subsystem and Related Methodsccueiiiiiiiiiiiriiiiiiiiiiiieiieeeeieeeenneeanns 314
DB_ENV->8Et_[Q DSIZE() “etreuttreiutienetieiterereteeaeeeeaneeeeseeerenaeeesneesesnsesannseesnseeanns 315
DB_ENV->8EE_1G dir() veeeereteeruueeenuteeeiuteeseeeenueeessneeesnueeesnaseesneeessneeessnssesnassssnnens 316
DB_ENV->get_[g filemMOde() ceueereintiriietieiittieiteeeieteeaneeeeaeeeenneeeenaeeesneesesneeesnnneens 317
DB_ENV->8Et_[Q MAX() +tereruttennetrennterenneeeaeeeesneeresaeeeeneeeesneeeesnsesennsessnsesannessannes 318
DB_ENV->get_[g regionmMaX() «eeeeeeeeereererueereneeeesneeeenneeeesaeeesnsesesnsssennsesssssesnsssanns 319
DB_ENV->108_arChiVe() veeeeueiiiietiriietiiietieieereneeeeaeeeesneesenaeeesneeessaeessnneessnneesnnes 320

4/12/2010

DB C API Page v

DB_ENV->10ZG_CUISOI() tuutteennterenueeesneeeesneeeenueeeenaeeesneeeesnessenasessnsssssnsssennssssnnssennes 322

DB_ENV->108 _fIlE() eveernetieiutiieitereieteeaeeeenneeeenneeeaeeeesneeeesnsesennseesnsssesnssesnnneenns 323
DB_ENV->108_flUSN() tuuetiiintiiietieiittiiittteieteeeneeeereeeranaeeesneeeesneeeesasesonneessneeesnnees 324
DB_ENV->10g_GET_CONFIG() vvveernuerennueeenuteeenueeeseeeesneeeenneeesnaeeesnaeeesneeessneeesnnesesnnees 325
DB_ENV->108 _PriNtf() ueeeerueiieiteriietieiietiereereneeeesneeeesneeeesaeeesnaeessneesssnsessnnsesnnees 327
DB_ENV->108 _PUL() eteeenuteenuterenueeranuteeaneeeesueeeesneeeensseesnsesesnsesennneesnsssesnsssennnsenns 328
DB_ENV->10g_SET_CONFIG() teurrtrennteranuteeneteeieeeenaeeeeneeeesneeeenneerenneessneesesnessennseennes 330
DB_ENV->10Z_ STAT() vuvveeeneteenueerenueeeenueeesneeeesneeeesueeeseeeesneeeesnseesnnseesnsssesnssesnnneens 333
DB_ENV->10g_Stat_Prinf() «eeueeeeeneerenueereneeeerneeeesueerenaeeeeneeeesneeresneeeonsseesnessesnsesanns 336
DB_ENV->SEt_[Q DSIZE() teeuuttrrnutientteeitteeiuteeeieeeeaeeeesneeeenneeesnaeeesnesessneeesnnesesnness 337
DB_ENV->SEt_IG diN() teueerernetierutereeeieneerenneereneeeesneesenneesenneeesnsssesnessennsessnnssannes 339
DB_ENV->set_[g_filemMOde() «eeveretirietiiittieitiriittieieerenaeeeaneeeenneeeenaeesonaeessneesennens 341
DB_ENV->SEt_[Q MaAX() teuurtreuterenuteraueeeaueeeesueeeesueeesneeeessseeesnseesnnssesnsssesnssesnnneens 342
DB_ENV->Set_[g regionmMaX() tevueeeereeeereeeenueeeenueeeenueeeseeeesneeessneeesnassesnasessnseesnnes 344
The DB_LOGC Handle ..cuueiiiitiiiiiiiiitieietieieeeeeeeeenneeeenaeeeonaeessnesessnseesnnsesnneens 345
DB_LOGEC->ClOSE() tvvveerreennueeeereraineeeeeeeesssseeseesessseseesesssseeesessnssssssesssnsssseeennnnes 346
DB_LOGC->GEE() tuuernutrnntrnneneeneeneenneeeneeenteentesntsenssensoessontsonsssassonssonssssessnesnns 347
Co)e B elo] 101 - PPN 349
8. The DB_MPOOLFILE HanNdLe ...eiiietiiiietiiittiiieeraeteenneerenaeerenaeeesneeesnneeeonassesnnseenneens 350
Memory Pools and Related Methodsc.eeiiiiiiiiiiiiiiiiiiii i eieereieeeeneeeanneens 351
D) e 1 il 101 o] {) EP PP PP 353
DB_ENV->get_CaCh@_MAX() weereretieruetrereeereneeeenneeeerueeseneeeesneeeesneeeenasessneeesnnssesnnees 354
DB_ENV->8et_CACN@SIZE() teeuuterenttinnnttrenneereneeeeaeeeenneereseeessnseeesneesennsessnaseesnsesanns 355
DB_ENV->get_mp_maX_0PENfd() «eeiereterrretieneerereeeeereeeesneeeenaeeesneeeesnesessnsessnnsesnnes 356
DB_ENV->get_MpP_MaX_WIEE() teeuruutetrerernneeerrereianeeeseessanneessesssnnessssassnnsessssesnanes 357
DB_ENV->get_MpP_MMAPSIZE() «vverrernnunrerrerananneeeeeeranneesseeesaneesssessanssessesssansasssesnes 358
DB_ENV->MemMP_fCrEate() vueeeeueeeereeeeiueeeeiueeenieeeesueeeenneeesnaeeesnaeessneeessneeesnnsseonness 359
DB_ENV->MemMP_r@GISTEI() teerennuurtttreerrneeerreasinneessesasanneesseessnansssssessansasssessansesss 360
DB_ENV->MemMP_STAL() «eveernnnretrerenineterrerreeeereeennaneeeseessanneessesssnnsessesssnnnessseasnnns 362
DB_ENV->memp_stat_Print() «oeeeeerereiereriiitttiiiiiinetereeiannteeseeessaneeessesssnnsesssennnnns 368
DB_ENV->MEMP_SYNC() +eerrennunrerreennneeesseenanneessesesnneesssessnnsasssesssansesssessannssssenss 369
DB_ENV->mMemMpP_triCKLE() cuveeeenntieittieiittetiieeiteeeieeeaareeeenneeesnaeeeseesesneeesnnesesnnees 370
DB_ENV->Set_CACNE_IMAX() teurrttetteniieeeeteeaiinteeeeeenanseeeeeeessseeeeeessnsseeeeesesnsseseeennns 371
DB _ENV->St _CACNESIZE() +ettieiiintttieieiiitttieiiiieeetteeaiseeeeeeaainaeeseeeennssesseeennnneseenn 372
DB_ENV->set_mp_maX_0PENfA() teeueereruteeeeteereeeeneeeenueeeeneeeeseeeesneeeensseesnsssesneaens 374
DB_ENV->Set_MpP_MaX_WIEE() «eeerrerrnnrtetrrennteeereesnnneeeseessnneessesssnnsessssassansssssanes 375
DB_ENV->Set_MP_MMAPSIZE() +eeuvuerrerreennanreerreananeeessesasannessssessnnssssssassansasssesssnnaes 376
DB_MPOOLFILE->CLOSE() +eeuuterenuteeaueeeenueerenueereseeeesneeeesneessnaeessneeessnssssnnsessnseesnneens 377
DB_MPOOLFILE->ZET() teuuettenuttranneeeanuteeaneerenneeeesneeesneeeesnsesesnseesnseesnsssesnssesnnsaenns 378
DB_MPOOLFILE->0PEN() +utttenutttanneeeenuteeaneeeesneeeesneeeennseesnsasesnsseesnseessnssessssesnssens 381
DB_MPOOLFILE->PUL() +teeuueeeanueeeanueeeeeeeesneeeesneeessuseesnaeeesnasessnseessassesnassssnnsessnnens 383
DB_MPOOLFILE->SYNC() +teeeuuteenuuerenueerenueeesneeeesneesesasesenssessnsesesnsesesnssssnsssssnsssannes 385
DB_MPOOLFILE->ZEt_Clear_LEN() «eveueeeeruetrereeeraneteeneeeeneeeeeneeeesneeeesaeessnnseesnesesnneens 386
DB_MPOOLFILE->ZEt_fileid() «eeeueererueereretirnietreitereneeeeneeeesneeeenaeeesneeessnesesnnsessneens 387
DB_MPOOLFILE->ZET_flags() «eevveeeeneeeenueeeenueeeenueeesneeeesneeessneeessaseesassssnseessnssesnnsens 388
DB_MPOOLFILE->ZET_fLYPE() +eeeuueereruternneererueererueeesneeeesneesesaeessssessnesesnnsessnnessnnes 389
DB_MPOOLFILE->ZET_LSN_OffSEL() veverrrererutereneteeneererneereneeereneeeesneeresneeesnaeessneesannes 390
DB_MPOOLFILE->ZET_MAXSIZE() vveeerrennnureerreenaneeessessanneesseessannessseesannsessssssnansassses 391
DB_MPOOLFILE->ZET_PGCOOKIE() +eeenurerenueeeenueeesrueeesneeeesueeessaeeesnaeessnseessneeesnnssesnness 392

4/12/2010

DB C API Page vi

DB_MPOOLFILE->GEt_Priority() veeeeeesueeeereerinreereeeraneeessessssneessssesnneesssessnnnsssseennas 393

DB_MPOOLFILE->SET_ClEAr_LEN() uueeeeneteerneerenneeeenueeeeeeeesneeeesneeeenaseesnsesesnssesnnnaenns 394
DB_MPOOLFILE->SET_fil@IA() vuveeerneereruterenuteeniueeeaeeeesneeeenueeesneesesneeessnseessnssesnnesnns 395
DB_MPOOLFILE->SET_flAagS() «eeeeueererueeraeeeenueererueeeereeeesneesenaeesonasessneeessasessnnsssnnes 397
DB_MPOOLFILE->SET_fLYPE() vuvveeeneerenueeeaneeeesueeeesneeeenneeesneseesnseeesnsessnsssesnsssssnsaens 399
DB_MPOOLFILE->SET_LSN_OffSEL() teuutereuteeenuerenneeeenueeeeneeeeseeeesneeeesneeesnaseesnaeesnneeens 400
DB_MPOOLFILE->SEt_MAaXSIZE() veverrereeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeesssessesesessssssssssennnnnnnes 401
DB_MPOOLFILE->SET_PGCOOKIE() tuvverenureeaneeeenueeeenueereneeeesneeeesneesenaeeesneseesnsssennseesnns 402
DB_MPOOLFILE->SET_PriOritY() ceeueeeeeeeerruneeerreresnneesseeasanneesssessnasessssessansesssessnnnsasss 403
0. MUEEX MEENOAS .uviiiitiiii ittt ettt eeteteeeneeeenneeeanateeaneesenneesennsessnsseenneesannes 405
MUEEX MEENOAS . eveeitt ittt et et e ettt eeeeeeenaeeeenaeeasnaeesnneeesnnesesnnessnneens 406
DB_ENV->MULEX_AllOC() turvrtttiiiiiitttieiiiiittetteeaiieeeeeeeaaaneeeeeeeesnsseseeeensnsssseseannnnes 407
DB _ENV->MULEX T E() tevvennttettteiiieteeteeaieeeeteeaaineeeeeesessseeeeesssssseesessnnsseseennnns 409
DB_ENV->mMUEEX_gEt_aliGN() teeurtrrrnttrriuteeriueeenneteeaneeeesueeesnaeeeseeessneeessnesesnasesonnens 410
DB_ENV->muteX_get_iNCrement() ..eeeeieeerireeireerniteereeennneeessessnneeesseessannsessesannnnes 411
DB_ENV->MULEX_GET_MAX() «vverreennunreerrearanneersesasnneeeseessnansesssessansssssesssansessssannnns 412
DB_ENV->muteX_get_tas_SPINS() «eveeeerererrneeeereeaianreeseeesnneessessssnnessssassnnssssseesnanes 413
DB_ENV->MUEEX_LOCK() teientttttiiiiiittetieiiieetteeeiieeeteeaaieeeeeeeensnnseeeeessnseseeeennnnes 414
DB_ENV->mMUEEX_SEt_alIGN() “eererrterrnetierneerenneererueeeseeeesneeresaeeesnaeeesneesenneesennssennes 415
DB_ENV->muteX_Set_iNCremMENT() .uuuuiiiiiiiiiiiieereeeeeeeeeeeseeeceseeeeeeeeeseeeseeseeeeeenes 416
DB _ENV->mMUEEX SO MAX() teeeetteteeeeeeeteeeeeteeeeeeeeeesnnnnnnssssasssssssssssssssssssssssssssanes 418
DB_ENV->muteX_Set_taS_SPINS() «eeeeernurreereenuneeeereassnneesseeesnneesseessnnsessssassansssssanss 420
(0] 3 2 AV 1 [T = &= 1 () I P P N 421
DB_ENV->muteX_stat_Print() «eeeeereeeieeeereeiiieteerierraneeerreesanneessseessnneesssesonnssssseennas 423
DB_ENV->MULEX_UNLOCK() turvetttiiriittettieiiiteeetteaaineeeeteeaiseeeeeessssseeseesssnssesseeannnnes 424
10. Replication METhOAS ..uiiiutiiiitiiii i et et eereteeeeeeenneeeenneeesneeeesnsesenneeeannnennn 425
Replication and Related Methodsccveiiiiiiiiiiiiiiiiiiiiiiiiri e e e e 426
DB_ENV->TEP_€lECT() +eveurternntteenttrenteeenuteeaeeeeaneeeesneeesseeesnsesesnseessnseesnnssesnsesens 427
DB_ENV->rep_get_ClOCKSKEW() tieuttirinteeeietieiieereaeeeennteeaneeeesneeeesneeesnneeesassesnneenns 430
DB_ENV->rep_get_CONTIG() +eeeertererueeerieeeereeeenueeesiueeesnaeeesesessneeessnesessassesnesesnneens 431
DB_ENV->rep_get_lIMIT() «eeveeerrnetieretiertereieteenneerenneereneeeesneeeesneesesneessnsseesnessannes 432
DB_ENV->rep_get _NSTLES() +eevrennurterrrenineterreernneesseeasnneesssessnnsessssessansssssessannsesss 433
DB_ENV->rep_get_PriOriTY() «oeeeenneeererinnteeterennneeeereesaneesssessanneessesssnnnsssssassnnnaes 434
DB_ENV->rep_get_reqUEST() «eeereerunteerrrenianeeereenrneeesseesaneesseessannesssesssnnsessesannnnes 435
DB_ENV->rep_get_timMeEOUL() «evveeerntetiererreeerreieieteeseeesanneessesssnnessssassnnssssssasnanes 436
DB_ENV->rep_proCesS_MESSAZE() «eeeernareeerreananneesreassnnsesssessnnaassssssnnsessssassansssssanss 437
DB_ENV->rep_Set_CLlOCKSKEW() cuutteenuteeretieieeeeiueeeenaeeeereeeesneeeenneeessaeeesnneessnaeesnnees 440
DB_ENV->rep_Set_CONTIG() tuveerenuteenueererueererueeesneeresneerenaeessneeeesneesennesesnnsessnsesannes 442
DB_ENV->rep_Set_lIMIT() tueeeerurererueeerieeeeneeeeieeeerieeeeseeeesneeessueeessaeessasessnseesnneens 445
DB_ENV->1eP_SET_NSTEES() tuuuvttrreennteereenranneesreenanneessesesaneesssessnnsssssessansesssesanes 446
DB_ENV->rep_Set_PriOriLY () cueeeeeeeerrneeeereranereerreessaneeeseessanneessesssnnsessesssnnessseasnnns 447
DB_ENV->rep_S€t_reQUEST() ceeuuureeerrernaeeeereenaneeessessnneessesesnnnessssassnnsessssassansassses 448
DB_ENV->rep_set_tIMEOUL() ..ueeerrrierintetrreniieterreeninteeseeesnneesssessnnnessssassansssssanss 450
DB_ENV->rep_Set_transPOrt() couuueeeereeerreneeereersnueeeereessaneeeseeesanneessesssnnnessssossnnsassss 453
DB_ENV->T@P_STAN() eveeerreeriunteereeennnneeeeeennneeesesesaneesssessnnsasssesssansesssessannsessenss 456
DB_ENV->T@P_STAt() evvetrreernnterreeeiinteererennaneeessessnaneesseessansesssessannsessessssnsassssanes 458
DB_ENV->rep_stat_PriNT() ceeeeeereerieterreirinntetriernanteeeeeasanneessesesnnessssassnnsesssassnnnaes 464
DB_ENV->T@P_SYNC() cuuvrterreennnnneeeeearanneesseessaneesssessansesssessnnnsessesssansasssessnnsassssns 465
DB_ENV->repmgr_add_remote_Site() ceeveeeeeeerereererueeeeneeeeseeeenneeeenneeesneeeesneeesnneeens 466

4/12/2010

DB C API Page vii

DB_ENV->repmgr_get_aCk_POLICY() cueeeeereeerruteerieteeeieeeeneeeenneeesnaeeesneeessneeessneessnnees 468

DB_ENV->repmgr_set_aCK_POLICY() «eeveeereeteerieerenueererueeesneeeesneerenneerenaseesneesesnsseanns 469
DB_ENV->repmgr_set_loCal_STtE() teveereretieretireietirietreieereneeeesneeeenaeeronneessneeesnnees 471
DB_ENV->repmgr_Site_lISt() «eeuueeereeeereeeenneeeeiueeeeiueeesneeessneeessneeesnaseesnaeessneeesnneens 472
DB_ENV->repPmM@r_SEArt() cueeeeeeeenenneterernrteeereennneeeeseessannessseasnneessssesnnsasssessnnnnes 474
DB_ENV->rePmM@r_SEAt() cuveeeeeennteeerrennneeerrersnueeesseessanneesseesnnsessssasnnsssssassnnnsesss 476
DB_ENV->repmgr_stat_Print() «.eeeeeeeeieeeeerierrieeeereeennteereeasanneesseessnnsessssossansssssanes 478
11. The DB_SEQUENCE Handlecciiuiiiiieiiiiiiiiiiiiiteniieteeieerenaeeeeneeeesneeesnneseonneennnes 479
Sequences and Related Methodscoeuiiiiiiiiiiiiiiiiii i eiieieeeieeeeeneeeanneann 480
AD_SEQUENCE _CrEATE ..uiiiitt ittt it eet e eetetetaeeeenaeeeaneeeenaeesonneessneeesnneesonnenn 481
DB_SEQUENCE->CLOSE() “vteeuuetrenueeranueeenueeeenneeeenaeeesneesesnessesnsessnassssnsssesnsssannseennes 482
DB_SEQUENCE->ZEE() +veeeuueeeenueeeeueeesueeeesneeesnseeesaseesnssessnseessnseesassssnnsessnssesnneens 483
DB_SEQUENCE->gEt_CACh@SIZE() weveeretrenuetrerueerereeeenueerenneeesneeessneeeesaeesonneessneeeennees 485
DB_SEQUENCE->ZEt_ADP() +teeurttrenneerenutereneeeesneeeesueeeenaeeesseeesnseeesnseeennseesnsssesnssens 486
DB_SEQUENCE->ZEt_flagS() eeeeueeeerneerenueerereeereneeeesueeeenaeesonaeeesneeeesasssonnsessnnessnnnens 487
DB_SEQUENCE->ZEE_KEY () vverenueererueerrueerenueerenaeersneeeesueeeesasessnssessneesssnssssnnsesnneens 488
DB_SEQUENCE->ZEt_FANGE() +eeeeueteerneerenueerenueeeeneeeesneesenneesanaeeesnsssesnessennsessnsssannes 489
DB_SEQUENCE->INTtIAl_VaAlUE() teverrrtttieiiiiitiiiiiiiiieeiieeeteeeiieeeeeeeensnaseseeeannnnes 490
DB_SEQUENCE->0PEN() +euutteanutteenueeeenueeesneeeenneeessanessnassesnasessnssessassessassssnasssnneens 491
DB_SEQUENCE->IemMOVE() tevtttrtttteteeeeeeeeeeeeeeeeeeeeeeseeseeeeeessesssssssssssssssssssnnnnssnnnnnns 493
DB_SEQUENCE->S€t_CaChESIZE() +etveeiiintttiiiiiiietttieiiieeetteeiiieeeeeteaaneeeeresessseseeennns 494
DB_SEQUENCE->SEt_flagS() veeveeeerueeeeeeeenueeeenueeeenueeesneeeesneeeesnseesnnseesnsesesnssesnnseenns 495
DB_SEQUENCE->SEt_FANGE() «evvuvrerreearnnneerreenananeesesessaneeessessannsessesssannesssessnnsassesns 496
DB_SEQUENCE->STAL() vvverenueeranueeenueerenueererueeesneeeesneesenaeeesnsseesnsssesnssssnnssssnsssennes 497
DB_SEQUENCE->STat_PriNE() «eeeuueeeeueeerneeeesneeeerueeesnaeeeseeeesneeessneeesassesnasessneeesnnees 499
12. The DB_TXN Handle .eciuueiiiiiiiiiitiiiitteiittieittreneeeeaeeeenneerenaeesenaseesneesennsesennseennes 500
Transaction Subsystem and Related Methodscceviiiiiiiiiiiiiiiiiiii i eeieeeeaes 501
DB->get_transactioNal() «eeeeeeeeeeeeeerueereneeeeeneeeesneeeenneeeeneeeesneeeesneesenneessnsesesnsssanns 502
DB_ENV->CASGroUP_BeZIN() «eeieueterrnetirieeiereeeraieeeenneereraeeeeneeeesneeessasesonneessneeeenneens 503
DB_ENV->GT_tX_IMAX() «tttterennuneterrennuneerreesnnneessesssnneessssossnnsesssesssansssssessannassses 504
DB_ENV->get_tX_timestampP() «eeeeeeeeriirteriiriitetieaiinnteereearanneesesessnanessssassansasssanss 505
DB_ENV->SET_TX_MAX() tevrrrrrrereereeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeeeeeeeeesseesessssssssssssssssannnns 506
DB_ENV->set_tX_timestampP() teeeeeteeiiiiiiitietiiiiiateerienianeeerreessnneesssessnnsessseannanes 508
DB_TXN->8D0IT() teuuteeenutinrttieietreneteeeeeeenneeeenaeeeeneeeesneeeesneesenneeesnessssnessennseennes 509
DB_ENV->tXN_DOGIN() tuuttrinttiiiittiiittriieteeaetreraeeeeraeeasneeresaeessnaeeesneesssneessnnesennees 510
DB_ENV->tXN_CheCKPOINT() «eeuutereetienttieitteeiuteeeneteeeeeeeaneeeeneeeesnnesesneeesnnneesnnneans 513
D] 2 D Bl .4 1 41 L) PPt 515
B T D BEa |1 of- U [TP N 517
DB_TXN->8T_NAME() teernnnntttrrenateeereenaneeessessanneessessnnnsessesssnnssssssssnnsessssasnnnes 518
DB_TXN->T0() teeuteeenneeeenuteeanueeesneeeesueeeenueeesnsseesnseeesnesessnseesnassssnsesssnnsessnssssnnes 519
DB_TXN->PIrEPArE() «eeeeeeennuueeeereeeaneeeseessanneessessnnsessessssnsessssessnnsssssessnnsssssessanes 520
DB_ENV->EXN_FECOVEI() uruurunnunnnueneeeneeeeeeeeeeeeeeeseaeeeeeesseseeeeseeseeeeeeeeeseessessessssannns 521
DB _TXN->SET NAME() teeteeteeteeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeesessennnnnnnsnnsssssssssssssssssssssssnnes 523
D] D B R 11 = T0 LU o (R PPt 524
DB_ENV->EXN_STAL() uuvurnnnnnnenneeeseeseseessesssssasssssannns 526
DB_ENV->tXN_STat_Print() «eeeeeeerineitieeiiieeieieereeerreenanteeseeasanneessesasnnnessssassnnnaes 530
A. Berkeley DB Command Lin@ UtilitieS ..eeveueiirineiirinterrieiieiieeeeneeeenneeesneeeesneeeesnseecnneens 531
0] 0 |1 = PP 532
oo T T el 11 1 T PP TP PPN 533

4/12/2010 DB C API Page viii

(oo 3ol =Tl 4o 7o) 1| A PP PP PP PP RPPPRE. K 1o
oo Ja [T Ve | o ol - QO PP PP PPSROP. X V4
(o[o 3 L) Y- ol (U o H PO PP PPPPPIN. 2 VA
a0 3 o - Vo [P PP PO PP PPPPPPINE. 2 101
(o[o 30T 101 Uo - S PP PP PP 21
oo T (=T el0)Y] PP PPPPPRIS. 1o X

e o T = R 1< 0|

a0 T o <] U PP 1o X
(oo Y= 1 Y PP PSPPI 1< Yo

SR 1] oY (ol Y =T = o <L - Y 4

[0] o (ol Y T = (<13 o 1 oY

C. Berkeley DB Application Space Static FUNCLIONS ..civuviiiiiiiiiiiiiiiiieiieieiieeeeneeeenneeeanneess D7D

1) - La (ol 2L¥ o Tt 4 [o] 3 S PP PP PP PP PPN ¥ 4 o
db_enV_Set_fUNC_ClOSE .uuuiiiiiiiiiiiii ittt ittt e eeiieeeeeeeeeinseeeseennnnsesseeannnss DIT
db_env_set_fUNC_dirfree «iviiii i it ittt et eiiee e ceeenaseeeeeeeaiasaeeeeans D78
db_env_set_funC_dirlistciiiiiiiiiiiiiiiiiiii ittt ieeeiiieieeeeaieeeeeeeaiasseeeeannnnness D79
db_enV_set_fUNC_EXIStS tiiiiiiiiiitiiiiiiiiiiiieiiieeteeeeiieeeeereesiseesesesesssssseeanannasssess D80
db_env_set_func_file_Map ...eieeieiiiiiiiiiiiiieiiiieiieeeiieeeieeeeneeeesneeeesnecesnaesesnaesaanes D81
(o[VY= W {0 Tl =T P PRNo 1 X
db_enV_set_fUNC_fSYNC .uuiiiiiiiiii it ieei i eeteeiateeeneeeesneeeasnseesnnesasneesanss D84
db_env_set_funC_ftrunCateccviiiiiiiiiiiiiiiiiiiii it ittt it eiii e ieeeiiie e eeenanaeaaee.. D8D
db_env_set_funC_Ii0INTO ..iiiiiiiiiiiiiiiiiiii i ittt ettt e eetiie et eeeaissesesennanseees.. D86
db_env_set_funC_mMalloCcciiiiiiiiiiiiiiiiiiiii ittt ieeeiiieeeteeeaiasseeseensssesssennnnnsss D87
db_enVv_set_fUNC_OPEN ...uiiiiiiiiiiiii it eiitteeteeenaeeeeeeeesneesesnsessnassesnsssannessss D88
db_env_set_fUunNC_Preadcccieiiiiiiiiiiiiiiiiiiieeeiteeaneeeeaeeresaeessnsesesnessennssesnassss D89
db_env_set_fUnNC_PWIIte ...iiiieiiiiiiiiiiiiiiiieiieeieeeneeeeneeeesneesasneeecsnsessnassasneesss D90
db_env_set_fUNC_Ireadciviiiiiiiiiiiiiiiii it ieeeiieeeteeeiisseeseeessnssssssennnnsseeeees D91
db_env_set_fuNC_realloC ..uiuieiiiiiiiiiiiii ittt ittt e eeiieeeeeeenaseeeeeenninssaseeaes D92
db_env_set_funC_region_MapP ..ccceiieieeirrieeieieereneeeeneereneeereneeeesnesessneesonassssnesesnnes 93
db_env_set_fUNC_IENAME ...ciiiiiiiiiiiiiiiiiiiieieiiieeeeeeeaieeeeeeeesnssesesennsnssesseeannss 29D
db_enV_Set_fUNC_SEEK .uviiiiiiiii ittt ittt e e eeiie e eeeeiisseeseeeessssesseeenanssseeees D96
db_env_set_func_UnlinK ...ciiiiiiiiiiiiiiiiii it ittt eeiii e eeeiieee e e eeennnaaaeeees D97
db_enV_Set_fUNC _WIIEE 1iiiiiiiiiii it ittt e it ieeeeiiseeeeeeeainssesseennnnsaseeess D98
db_env_set_func_yieldcccieiiiiiiiiiiiiiii it e et ettt eeneeeesieeeanneeeanaeeess D99

4/12/2010

DB C API Page ix

Preface

Welcome to Berkeley DB (DB). This document describes the C API for DB, version 4.8. It is intended to
describe the DB API, including all classes, methods, and functions. As such, this document is intended
for C developers who are actively writing or maintaining applications that make use of DB databases.

Conventions Used in this Book
The following typographical conventions are used within in this manual:

Structure names are represented in nonospaced font, as are net hod nanes. For example: "DB- >open()
is a method on a DB handle."

Variable or non-literal text is presented in italics. For example: "Go to your DB_INSTALL directory."”

Program examples are displayed in a nonospaced font on a shaded background. For example:

[* File: gettingstarted common.h */

typedef struct stock_dbs {
DB *inventory dbp; /* Database containing inventory information */
DB *vendor _dbp; /* Dat abase containing vendor information */

char *db_hone_dir; /* Directory containing the database files */
char *inventory db_name; /* Name of the inventory database */
char *vendor _db_narme; /* Name of the vendor database */

} STOCK_DBS;

|:| Finally, notes of interest are represented using a note block such as this.

For More Information

Beyond this manual, you may also find the following sources of information useful when building a DB
application:

o Getting Started with Berkeley DB for C [http://www.oracle.com/technology/documentation/
berkeley-db/db/gsg/C/BerkeleyDB-Core-C-GSG.pdf]

» Getting Started with Transaction Processing for C [http://www.oracle.com/technology/
documentation/berkeley-db/db/gsg_txn/C/BerkeleyDB-Core-C-Txn.pdf]

» Berkeley DB Getting Started with Replicated Applications for C [http://www.oracle.com/technology/
documentation/berkeley-db/db/gsg_db_rep/C/Replication_C_GSG.pdf]

» Berkeley DB C++ API [http://www.oracle.com/technology/documentation/berkeley-db/db/
api_reference/CXX/BDB-CXX_APIReference.pdf]

o Berkeley DB STL API [http://www.oracle.com/technology/documentation/berkeley-db/db/
api_reference/STL/BDB-STL_APIReference.pdf]

4/12/2010 DB C API Page x

http://www.oracle.com/technology/documentation/berkeley-db/db/gsg/C/BerkeleyDB-Core-C-GSG.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/gsg/C/BerkeleyDB-Core-C-GSG.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/gsg/C/BerkeleyDB-Core-C-GSG.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/gsg_txn/C/BerkeleyDB-Core-C-Txn.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/gsg_txn/C/BerkeleyDB-Core-C-Txn.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/gsg_txn/C/BerkeleyDB-Core-C-Txn.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/gsg_db_rep/C/Replication_C_GSG.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/gsg_db_rep/C/Replication_C_GSG.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/gsg_db_rep/C/Replication_C_GSG.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/api_reference/CXX/BDB-CXX_APIReference.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/api_reference/CXX/BDB-CXX_APIReference.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/api_reference/CXX/BDB-CXX_APIReference.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/api_reference/STL/BDB-STL_APIReference.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/api_reference/STL/BDB-STL_APIReference.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/api_reference/STL/BDB-STL_APIReference.pdf

» Berkeley DB TCL API [http://www.oracle.com/technology/documentation/berkeley-db/db/
api_reference/TCL/BDB-TCL_APIReference.pdf]

» Berkeley DB Programmer's Reference Guide [http://www.oracle.com/technology/documentation/
berkeley-db/db/programmer_reference/BDB_Prog_Reference.pdf]

4/12/2010 DB C API Page xi

http://www.oracle.com/technology/documentation/berkeley-db/db/api_reference/TCL/BDB-TCL_APIReference.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/api_reference/TCL/BDB-TCL_APIReference.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/api_reference/TCL/BDB-TCL_APIReference.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/programmer_reference/BDB_Prog_Reference.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/programmer_reference/BDB_Prog_Reference.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/programmer_reference/BDB_Prog_Reference.pdf

Chapter 1. Introduction to Berkeley DB APIs

Welcome to the Berkeley DB APl Reference Manual for C.

DB is a general-purpose embedded database engine that is capable of providing a wealth of data
management services. It is designed from the ground up for high-throughput applications requiring
in-process, bullet-proof management of mission-critical data. DB can gracefully scale from managing
a few bytes to terabytes of data. For the most part, DB is limited only by your system's available physical
resources.

This manual describes the various APls and command line utilities available for use in the DB library.

For a general description of using DB beyond the reference material available in this manual, see the
Getting Started Guides which are identified in this manual's preface.

This manual is broken into chapters, each one of which describes a series of APIs designed to work with
one particular aspect of the DB library. In many cases, each such chapter is organized around a "handle”,
or class, which provides an interface to DB structures such as databases, environments or locks. However,
in some cases, methods for multiple handles are combined together when they are used to control or
interface with some isolated DB functionality. See, for example, the The DB_LSN Handle chapter.

Within each chapter, methods, functions and command line utilities are organized alphabetically.

4/12/2010 DB C API Page 1

Chapter 2. The DB Handle

The DB is the handle for a single Berkeley DB database. A Berkeley DB database provides a mechanism
for organizing key-data pairs of information. From the perspective of some database systems, a Berkeley
DB database could be thought of as a single table within a larger database.

You create a DB handle using the db_create function. For most database activities, you must then open
the handle using the DB->open() method. When you are done with them, handles must be closed using
the DB->close() method.

Alternatively, you can create a DB and then rename, remove or verify the database without performing
an open. See DB->rename(), DB->remove() or DB->verify() for information on these activities.

It is possible to create databases such that they are organized within a database environment.
Environments are optional for simple Berkeley DB applications that do not use transactions, recovery,
replication or any other advanced features. For simple Berkeley DB applications, environments still
offer some advantages. For example, they provide some organizational benefits on-disk (all databases
are located on disk relative to the environment). Also, if you are using multiple databases, then
environments allow your databases to share a common in-memory cache, which makes for more efficient
usage of your hardware's resources.

See DB_ENYV for information on using database environments.

You specify the underlying organization of the data in the database (e.g. BTree, Hash, Queue, and
Recno) when you open the database. When you create a database, you are free to specify any of the
available database types. On subsequent opens, you must either specify the access method used when
you first opened the database, or you can specify DB_UNKNOWN in order to have this information retrieved
for you. See the DB->open() method for information on specifying database types.

4/12/2010

DB C API Page 2

Database and Related Methods

Database and Related Methods

Database Operations

Description

DB->associate()

Associate a secondary index

DB->associate_foreign()

Associate a foreign index

DB->close()

Close a database

db_create

Create a database handle

DB->compact()

Compact a database

DB->del() Delete items from a database

DB->err() Error message

DB->exists() Return if an item appears in a database
DB->fd() Return a file descriptor from a database
DB->get() Get items from a database

DB->get_byteswapped()

Return if the underlying database is in host order

DB->get_dbname()

Return the file and database name

DB->get_multiple()

Return if the database handle references multiple
databases

DB->get_open_flags()

Returns the flags specified to DB->open

DB->get_type()

Return the database type

DB->join()

Perform a database join on cursors

DB->key_range()

Return estimate of key location

DB->open()

Open a database

DB->put()

Store items into a database

DB->remove()

Remove a database

DB->rename()

Rename a database

DB->set_priority(), DB->get_priority()

Set/get cache page priority

DB->stat()

Database statistics

DB->stat_print()

Display database statistics

DB->sync()

Flush a database to stable storage

DB->truncate()

Empty a database

DB->upgrade()

Upgrade a database

DB->verify()

Verify/salvage a database

DB->cursor()

Create a cursor handle

Database Configuration

DB->set_alloc()

Set local space allocation functions

DB->set_cachesize(), DB->get_cachesize()

Set/get the database cache size

4/12/2010

DB C API

Page 3

Database and Related Methods

Database Operations

Description

DB->set_create_dir(), DB->get_create_dir()

Set/get the directory in which a database is placed

DB->set_dup_compare()

Set a duplicate comparison function

DB->set_encrypt(), DB->get_encrypt_flags()

Set/get the database cryptographic key

DB->set_errcall()

Set error message callback

DB->set_errfile(), DB->get_errfile()

Set/get error message FILE

DB->set_errpfx(), DB->get_errpfx()

Set/get error message prefix

DB->set_feedback()

Set feedback callback

DB->set_flags(), DB->get_flags()

Set/get general database configuration

DB->set_lorder(), DB->get_lorder()

Set/get the database byte order

DB->set_msgcall()

Set informational message callback

DB->set_msgfile(), DB->get_msgfile()

Set/get informational message FILE

DB->set_pagesize(), DB->get_pagesize()

Set/get the underlying database page size

DB->set_partition()

Set database partitioning

DB->set_partition_dirs(), DB->get_partition_dirs()

Set/get the directories used for database partitions

Btree/Recno Configuration

DB->set_append_recno()

Set record append callback

DB->set_bt_compare()

Set a Btree comparison function

DB->set_bt_compress()

Set Btree compression functions

DB->set_bt_minkey(), DB->get_bt_minkey()

Set/get the minimum number of keys per Btree
page

DB->set_bt_prefix()

Set a Btree prefix comparison function

DB->set_re_delim(), DB->get_re_delim()

Set/get the variable-length record delimiter

DB->set_re_len(), DB->get_re_len()

Set/get the fixed-length record length

DB->set_re_pad(), DB->get_re_pad()

Set/get the fixed-length record pad byte

DB->set_re_source(), DB->get_re_source()

Set/get the backing Recno text file

Hash Configuration

DB->set_h_compare()

Set a Hash comparison function

DB->set_h_ffactor(), DB->get_h_ffactor()

Set/get the Hash table density

DB->set_h_hash()

Set a hashing function

DB->set_h_nelem(), DB->get_h_nelem()

Set/get the Hash table size

Queue Configuration

DB->set_q_extentsize(), DB->get_q_extentsize()

Set/get Queue database extent size

DB C API

Page 4

DB->associate()

DB->associate()

#i ncl ude <db. h>

int
DB- >associ ate(DB *primary, DB TXN *txnid, DB *secondary,
int (*callback)(DB *secondary,
const DBT *key, const DBT *data, DBT *result), u_int32_t flags);

The DB- >associ at e() function is used to declare one database a secondary index for a primary database.
The DB handle that you call the associ at () method from is the primary database.

After a secondary database has been "associated” with a primary database, all updates to the primary
will be automatically reflected in the secondary and all reads from the secondary will return
corresponding data from the primary. Note that as primary keys must be unique for secondary indices
to work, the primary database must be configured without support for duplicate data items. See
Secondary Indices in the Berkeley DB Programmer’s Reference Guide for more information.

The DB- >associ at () method returns a non-zero error value on failure and 0 on success.

Parameters

callback

The callback parameter is a callback function that creates the set of secondary keys corresponding to
a given primary key and data pair.

The callback parameter may be NULL if both the primary and secondary database handles were opened
with the DB_RDONLY flag.

The callback takes four arguments:
« secondary
The secondary parameter is the database handle for the secondary.
* key
The key parameter is a DBT referencing the primary key.
« data
The data parameter is a DBT referencing the primary data item.
e result

The result parameter is a zeroed DBT in which the callback function should fill in data and size fields
that describe the secondary key or keys.

4/12/2010

DB C API Page 5

../../programmer_reference/am_second.html

DB->associate()

|:| Berkeley DB is not re-entrant. Callback functions should not attempt to make library calls (for
example, to release locks or close open handles). Re-entering Berkeley DB is not guaranteed to
work correctly, and the results are undefined.

The result DBT can have the following flags set in its flags field:

« DB_DBT_APPMALLOC

If the callback function needs to allocate memory for the result data field (rather than simply pointing
into the primary key or datum), DB_DBT_APPMALLOC should be set in the flags field of the result
DBT, which indicates that Berkeley DB should free the memory when it is done with it.

« DB_DBT_MULTIPLE

To return multiple secondary keys, DB_DBT_MULTIPLE should be set in the flags field of the result
DBT, which indicates Berkeley DB should treat the size field as the number of secondary keys (zero
or more), and the data field as a pointer to an array of that number of DBTs describing the set of
secondary keys.

When multiple secondary keys are returned, keys may not be repeated. In other words, there
must be no repeated record numbers in the array for Recno and Queue databases, and keys must
not compare equally using the secondary database's comparison function for Btree and Hash databases.
If keys are repeated, operations may fail and the secondary may become inconsistent with the
primary.

The DB_DBT_APPMALLOC flag may be set for any DBT in the array of returned DBT's to indicate that
Berkeley DB should free the memory referenced by that particular DBT's data field when it is done
with it.

The DB_DBT_APPMALLOC flag may be combined with DB_DBT_MULTIPLE in the result DBT's flag field
to indicate that Berkeley DB should free the array once it is done with all of the returned keys.

In addition, the callback can optionally return the following special value:
« DB_DONOTI NDEX

If any key/data pair in the primary yields a null secondary key and should be left out of the secondary
index, the callback function may optionally return DB_DONOTINDEX. Otherwise, the callback function
should return 0 in case of success or an error outside of the Berkeley DB name space in case of failure;
the error code will be returned from the Berkeley DB call that initiated the callback.

If the callback function returns DB_DONOTINDEX for any key/data pairs in the primary database, the
secondary index will not contain any reference to those key/data pairs, and such operations as cursor
iterations and range queries will reflect only the corresponding subset of the database. If this is not
desirable, the application should ensure that the callback function is well-defined for all possible
values and never returns DB_DONOTINDEX.

Returning DB_DONOTINDEX is equivalent to setting DB_DBT_MULTIPLE on the result DBT and setting
the size field to zero.

4/12/2010

DB C API Page 6

DB->associate()

flags

The flags parameter must be set to 0 or by bitwise inclusively OR'ing together one or more of the
following values:

« DB_CREATE

If the secondary database is empty, walk through the primary and create an index to it in the empty
secondary. This operation is potentially very expensive.

If the secondary database has been opened in an environment configured with transactions, the
entire secondary index creation is performed in the context of a single transaction.

Care should be taken not to use a newly-populated secondary database in another thread of control
until the DB- >associ at e() call has returned successfully in the first thread.

If transactions are not being used, care should be taken not to modify a primary database being used
to populate a secondary database, in another thread of control, until the DB- >associ at ¢() call has
returned successfully in the first thread. If transactions are being used, Berkeley DB will perform
appropriate locking and the application need not do any special operation ordering.

» DB | MUTABLE_KEY
Specifies the secondary key is immutable.

This flag can be used to optimize updates when the secondary key in a primary record will never be
changed after the primary record is inserted. For immutable secondary keys, a best effort is made
to avoid calling the secondary callback function when primary records are updated. This optimization
may reduce the overhead of update operations significantly if the callback function is expensive.

Be sure to specify this flag only if the secondary key in the primary record is never changed. If this
rule is violated, the secondary index will become corrupted, that is, it will become out of sync with
the primary.

primary
The primary parameter should be a database handle for the primary database that is to be indexed.
secondary

The secondary parameter should be an open database handle of either a newly created and empty
database that is to be used to store a secondary index, or of a database that was previously associated
with the same primary and contains a secondary index. Note that it is not safe to associate as a secondary
database a handle that is in use by another thread of control or has open cursors. If the handle was
opened with the DB_THREAD flag it is safe to use it in multiple threads of control after the

DB- >associ at e() method has returned. Note also that either secondary keys must be unique or the
secondary database must be configured with support for duplicate data items.

4/12/2010

DB C API Page 7

DB->associate()

Errors

Class

txnid

If the operation is part of an application-specified transaction, the txnid parameter is a transaction
handle returned from DB_ENV->txn_begin(); if the operation is part of a Berkeley DB Concurrent Data
Store group, the txnid parameter is a handle returned from DB_ENV->cdsgroup_begin(); otherwise
NULL. If no transaction handle is specified, but the operation occurs in a transactional database, the
operation will be implicitly transaction protected.

The DB- >associ at e() method may fail and return one of the following non-zero errors:
DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions to be rolled back.
This invalidates all the database and cursor handles opened in the replication environment. Once this
occurs, an attempt to use such a handle will return DB_REP_HANDLE DEAD. The application will need to
discard the handle and open a new one in order to continue processing.

DB_REP_LOCKOUT
The operation was blocked by client/master synchronization.
EINVAL

If the secondary database handle has already been associated with this or another database handle;
the secondary database handle is not open; the primary database has been configured to allow
duplicates; or if an invalid flag value or parameter was specified.

DB

See Also

Database and Related Methods

4/12/2010

DB C API Page 8

DB->associate_foreign()

DB->associate_foreign()

#i ncl ude <db. h>

int

DB- >associ ate_foreign(DB *forei gn, DB *secondary,,
int (*callback)(DB *secondary,
const DBT *key, DBT *data, const DBT *foreignkey, int *changed),
u_int32_t flags);

The DB- >associ ate_forei gn() function is used to declare one database a foreign constraint for a
secondary database. The DB handle that you call the associ ate_f orei gn() method from is the foreign
database.

After a foreign database has been "associated” with a secondary database, all keys inserted into the
secondary must exist in the foreign database. Attempting to add a record with a foreign key that does
not exist in the foreign database will cause the put method to fail and return DB_FOREI GN_CONFLI CT.

Deletions in the foreign database affect the secondary in a manner defined by the flags parameter.
See Foreign Indices in the Berkeley DB Programmer's Reference Guide for more information.

The DB- >associ ate_forei gn() method returns a non-zero error value on failure and 0 on success.

Parameters

callback
The callback parameter is a callback function that nullifies the foreign key portion of a data DBT.
The callback parameter must be NULL if either DB_FOREIGN_ABORT or DB_FOREIGN_CASCADE is set.
The callback takes four arguments:
e secondary
The secondary parameter is the database handle for the secondary.
e key
The key parameter is a DBT referencing the primary key.
» data
The data parameter is a DBT referencing the primary data item to be updated.
« foreignkey
The foreignkey parameter is a DBT referencing the foreign key which is being deleted.
« changed

The changed parameter is a pointer to a boolean value, indicated whether data has changed.

4/12/2010

DB C API Page 9

../../programmer_reference/am_foreign.html

DB->associate_foreign()

Errors

|:| Berkeley DB is not re-entrant. Callback functions should not attempt to make library calls (for
example, to release locks or close open handles). Re-entering Berkeley DB is not guaranteed to
work correctly, and the results are undefined.
flags
The flags parameter must be set to one of the following values:
o DB _FOREI GN_ABORT

Abort the deletion of a key in the foreign database and return DB_FOREIGN_CONFLICT if that key
exists in the secondary database. The deletion should be protected by a transaction to ensure database
integrity after the aborted delete.

« DB_FOREI GN_CASCADE

The deletion of a key in the foreign database will also delete that key from the secondary database
(and the corresponding entry in the secondary's primary database.)

« DB_FOREI GN_NULLI FY

The deletion of a key in the foreign database will call the nullification function passed to
associate_foreign and update the secondary database with the changed data.

foreign
The foreign parameter should be a database handle for the foreign database.
secondary

The secondary parameter should be an open database handle of a database that contains a secondary
index who's keys also exist in the foreign database.

The DB- >associ at e_forei gn() method may fail and return one of the following non-zero errors:
DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions to be rolled back.
This invalidates all the database and cursor handles opened in the replication environment. Once this
occurs, an attempt to use such a handle will return DB_REP_HANDLE DEAD. The application will need to
discard the handle and open a new one in order to continue processing.

DB_REP_LOCKOUT

The operation was blocked by client/master synchronization.

4/12/2010

DB C API Page 10

DB->associate_foreign()

EINVAL

If the foreign database handle is a secondary index; the foreign database handle has been configured
to allow duplicates; the foreign database handle is a renumbering recno database; callback is configured
and DB_FOREIGN_NULLIFY is not; DB_FOREIGN_NULLIFY is configured and callback is not.

Class
DB

See Also

Database and Related Methods

4/12/2010 DB C API Page 11

DB->close()

DB->close()

#i ncl ude <db. h>

int
DB- >cl ose(DB *db, u_int32_t flags);

The DB- >cl ose() method flushes any cached database information to disk, closes any open cursors,
frees any allocated resources, and closes any underlying files.

Although closing a database handle will close any open cursors, it is recommended that applications
explicitly close all their DBcursor handles before closing the database. The reason why is that when
the cursor is explicitly closed, the memory allocated for it is reclaimed; however, this will not happen
if you close a database while cursors are still opened.

The same rule, for the same reasons, hold true for DB_TXN handles. Simply make sure you close all
your transaction handles before closing your database handle.

Because key/data pairs are cached in memory, applications should make a point to always either close
database handles or sync their data to disk (using the DB->sync() method) before exiting, to ensure
that any data cached in main memory are reflected in the underlying file system.

When called on a database that is the primary database for a secondary index, the primary database
should be closed only after all secondary indices referencing it have been closed.

When multiple threads are using the DB concurrently, only a single thread may call the DB- >cl ose()
method.

The DB handle may not be accessed again after DB- >cl ose() is called, regardless of its return.

The DB- >cl ose() method returns a non-zero error value on failure and 0 on success.

Parameters

flags
The flags parameter must be set to 0 or be set to the following value:
« DB_NOSYNC

Do not flush cached information to disk. This flag is a dangerous option. It should be set only if the
application is doing logging (with transactions) so that the database is recoverable after a system or
application crash, or if the database is always generated from scratch after any system or application
crash.

It is important to understand that flushing cached information to disk only minimizes the window
of opportunity for corrupted data. Although unlikely, it is possible for database corruption to happen
if a system or application crash occurs while writing data to the database. To ensure that database
corruption never occurs, applications must either: use transactions and logging with automatic

recovery; use logging and application-specific recovery; or edit a copy of the database, and once all

4/12/2010

DB C API Page 12

DB->close()

applications using the database have successfully called DB- >cl ose() , atomically replace the original
database with the updated copy.

Note that this flag only works when the database has been opened using an environment.

Errors

The DB- >cl ose() method may fail and return one of the following non-zero errors:

EINVAL

An invalid flag value or parameter was specified.
Class

DB
See Also

Database and Related Methods

4/12/2010 DB C API Page 13

db_create

db_create

#incl ude <db. h>
int db_create(DB **dbp, DB_ENV *dbenv, u_int32_t flags);

The db_create() function creates a DB structure that is the handle for a Berkeley DB database. This
function allocates memory for the structure, returning a pointer to the structure in the memory to
which dbp refers. To release the allocated memory and discard the handle, call the DB->close(),
DB->remove(), DB->rename(), or DB->verify() methods.

DB handles are free-threaded if the DB_THREAD flag is specified to the DB->open() method when the
database is opened or if the database environment in which the database is opened is free-threaded.
The handle should not be closed while any other handle that refers to the database is in use; for
example, database handles must not be closed while cursor handles into the database remain open,
or transactions that include operations on the database have not yet been committed or aborted. Once
the DB->close(), DB->remove(), DB->rename(), or DB->verify() methods are called, the handle may not
be accessed again, regardless of the method's return.

The DB handle contains a special field, app_pri vat e, which is declared as type voi d *. This field is
provided for the use of the application program. It is initialized to NULL and is not further used by
Berkeley DB in any way.

The db_cr eat e function returns a non-zero error value on failure and 0 on success.

Parameters

Errors

dbp
The dbp parameter references the memory into which the returned structure pointer is stored.
dbenv

If the dbenv parameter is NULL, the database is standalone; that is, it is not part of any Berkeley DB
environment.

If the dbenv parameter is not NULL, the database is created within the specified Berkeley DB
environment. The database access methods automatically make calls to the other subsystems in Berkeley
DB, based on the enclosing environment. For example, if the environment has been configured to use
locking, the access methods will automatically acquire the correct locks when reading and writing
pages of the database.

flags

The flags parameter is currently unused, and must be set to 0.

The db_creat () function may fail and return one of the following non-zero errors:

4/12/2010

DB C API Page 14

db_create

EINVAL

An invalid flag value or parameter was specified.
Class

DB
See Also

Database and Related Methods

4/12/2010 DB C API Page 15

DB->compact()

DB->compact()

#i ncl ude <db. h>

i nt
DB- >conpact (DB *db, DB TXN *txnid,
DBT *start, DBT *stop, DB COVPACT *c_data, u_int32_t flags, DBT *end);

The DB- >conpact () method compacts Btree and Recno access method databases, and optionally returns
unused Btree, Hash or Recno database pages to the underlying filesystem.

The DB- >conpact () method returns a non-zero error value on failure and 0 on success.

Parameters

txnid

If the operation is part of an application-specified transaction, the txnid parameter is a transaction
handle returned from DB_ENV->txn_begin(); if the operation is part of a Berkeley DB Concurrent Data
Store group, the txnid parameter is a handle returned from DB_ENV->cdsgroup_begin(); otherwise
NULL.

If a transaction handle is supplied to this method, then the operation is performed using that transaction.
In this event, large sections of the tree may be locked during the course of the transaction.

If no transaction handle is specified, but the operation occurs in a transactional database, the operation
will be implicitly transaction protected using multiple transactions. These transactions will be
periodically committed to avoid locking large sections of the tree. Any deadlocks encountered cause
the compaction operation to be retried from the point of the last transaction commit.

start

If non-NULL, the start parameter is the starting point for compaction in a Btree or Recno database.
Compaction will start at the smallest key greater than or equal to the specified key. If NULL, compaction
will start at the beginning of the database.

stop

If non-NULL, the stop parameter is the stopping point for compaction in a Btree or Recno database.
Compaction will stop at the page with the smallest key greater than the specified key. If NULL,
compaction will stop at the end of the database.

c_data

If non-NULL, the c_data parameter contains additional compaction configuration parameters, and
returns compaction operation statistics, in a structure of type DB_COMPACT.

The following input configuration fields are available from the DB_COMPACT structure:

e int conpact fillpercent;

4/12/2010

DB C API Page 16

DB->compact()

If non-zero, this provides the goal for filling pages, specified as a percentage between 1 and 100.
Any page in a Btree or Recno databases not at or above this percentage full will be considered for
compaction. The default behavior is to consider every page for compaction, regardless of its page
fill percentage.

e int conpact _pages;

If non-zero, the call will return after the specified number of pages have been freed, or no more
pages can be freed.

e db_tineout t conpact tineout;

If non-zero, and no txnid parameter was specified, this parameter identifies the lock timeout used
for implicit transactions, in microseconds.

The following output statistics fields are available from the DB_COVPACT structure:
e u_int32_t conpact_deadl ock;

An output statistics parameter: if no txnid parameter was specified, the number of deadlocks which
occurred.

u_int32_t conpact_ pages_exanine;

An output statistics parameter: the number of database pages reviewed during the compaction phase.

u_int32_t conpact_pages_free;

An output statistics parameter: the number of database pages freed during the compaction phase.

u_int32_t conpact |evels;

An output statistics parameter: the number of levels removed from the Btree or Recno database
during the compaction phase.

u_int32_t conpact_pages_truncated,;

An output statistics parameter: the number of database pages returned to the filesystem.
flags

The flags parameter must be set to 0 or one of the following values:

« DB_FREELI ST_ONLY

Do no page compaction, only returning pages to the filesystem that are already free and at the end
of the file. This flag must be set if the database is a Hash access method database.

« DB_FREE_SPACE

Return pages to the filesystem when possible. If this flag is not specified, pages emptied as a result
of compaction will be placed on the free list for re-use, but never returned to the filesystem.

4/12/2010

DB C API Page 17

DB->compact()

Errors

Class

Note that only pages at the end of a file can be returned to the filesystem. Because of the one-pass
nature of the compaction algorithm, any unemptied page near the end of the file inhibits returning
pages to the file system. A repeated call to the DB- >conpact () method with a low compact_fillpercent
may be used to return pages in this case.

end

If non-NULL, the end parameter will be filled in with the database key marking the end of the
compaction operation in a Btree or Recno database. This is generally the first key of the page where
the operation stopped.

The DB- >conpact () method may fail and return one of the following non-zero errors:
DB_LOCK_DEADLOCK

A transactional database environment operation was selected to resolve a deadlock.
DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was unable
to grant a lock in the allowed time.

DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions to be rolled back.
This invalidates all the database and cursor handles opened in the replication environment. Once this
occurs, an attempt to use such a handle will return DB_REP_HANDLE DEAD. The application will need to
discard the handle and open a new one in order to continue processing.

DB_REP_LOCKOUT

The operation was blocked by client/master synchronization.
EACCES

An attempt was made to modify a read-only database.
EINVAL

An invalid flag value or parameter was specified.

DB

See Also

Database and Related Methods

4/12/2010

DB C API Page 18

DB->del()

DB->del()

#i ncl ude <db. h>

int
DB->del (DB *db, DB_TXN *txnid, DBT *key, u_int32_t flags);

The DB- >del () method removes key/data pairs from the database. The key/data pair associated with
the specified key is discarded from the database. In the presence of duplicate key values, all records
associated with the designated key will be discarded.

When called on a database that has been made into a secondary index using the DB->associate() method,
the DB- >del () method deletes the key/data pair from the primary database and all secondary indices.

The DB- >del () method will return DB_NOTFOUND if the specified key is not in the database. The

DB- >del () method will return DB_KEYEMPTY if the database is a Queue or Recno database and the
specified key exists, but was never explicitly created by the application or was later deleted. Unless
otherwise specified, the DB- >del () method returns a non-zero error value on failure and 0 on success.

Parameters

flags
The flags parameter must be set to 0 or one of the following values:
» DB_CONSUME

If the database is of type DB_QUEUE then this flag may be set to force the head of the queue to
move to the first non-deleted item in the queue. Normally this is only done if the deleted item is
exactly at the head when deleted.

o DB_MULTIPLE
Delete multiple data items using keys from the buffer to which the key parameter refers.

To delete records in bulk by key with the btree or hash access methods, construct a bulk buffer in
the key DBT using DB_MULTIPLE_WRITE_INIT and DB_MULTIPLE_WRITE_NEXT. To delete records in
bulk by record number, construct the key DBT using DB_MULTIPLE_RECNO_WRITE_INIT and
DB_MULTIPLE_RECNO_WRITE_NEXT with a data size of zero.

A successful bulk delete operation is logically equivalent to a loop through each key/data pair,
performing a DB->del() for each one.

See the DBT and Bulk Operations for more information on working with bulk updates.
The DB_MJULTI PLE flag may only be used alone.
o DB_MULTI PLE_KEY

Delete multiple data items using keys and data from the buffer to which the key parameter refers.

4/12/2010

DB C API Page 19

../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND
../../programmer_reference/program_errorret.html#program_errorret.DB_KEYEMPTY

DB->del()

Errors

To delete records in bulk with the btree or hash access methods, construct a bulk buffer in the key
DBT using DB_MULTIPLE_WRITE_INIT and DB_MULTIPLE_KEY_WRITE_NEXT. To delete records in bulk
with the recno or hash access methods, construct a bulk buffer in the key DBT using
DB_MULTIPLE_RECNO_WRITE_INIT and DB_MULTIPLE_RECNO_WRITE_NEXT.

See the DBT and Bulk Operations for more information on working with bulk updates.
The DB_MJILTI PLE_KEY flag may only be used alone.

key

The key DBT operated on.

txnid

If the operation is part of an application-specified transaction, the txnid parameter is a transaction
handle returned from DB_ENV->txn_begin(); if the operation is part of a Berkeley DB Concurrent Data
Store group, the txnid parameter is a handle returned from DB_ENV->cdsgroup_begin(); otherwise
NULL. If no transaction handle is specified, but the operation occurs in a transactional database, the
operation will be implicitly transaction protected.

The DB- >del () method may fail and return one of the following non-zero errors:
DB_FOREIGN_CONFLICT
A foreign key constraint violation has occurred. This can be caused by one of two things:

1. An attempt was made to add a record to a constrained database, and the key used for that record
does not exist in the foreign key database.

2. DB_FOREIGN_ABORT (page 10) was declared for a foreign key database, and then subsequently a
record was deleted from the foreign key database without first removing it from the constrained
secondary database.

DB_LOCK_DEADLOCK
A transactional database environment operation was selected to resolve a deadlock.
DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was unable
to grant a lock in the allowed time.

DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions to be rolled back.
This invalidates all the database and cursor handles opened in the replication environment. Once this
occurs, an attempt to use such a handle will return DB_REP_HANDLE DEAD. The application will need to
discard the handle and open a new one in order to continue processing.

4/12/2010

DB C API Page 20

DB->del()

Class

DB_REP_LOCKOUT

The operation was blocked by client/master synchronization.

DB_SECONDARY_BAD

A secondary index references a nonexistent primary key.
EACCES

An attempt was made to modify a read-only database.
EINVAL

An invalid flag value or parameter was specified.

DB

See Also

Database and Related Methods

4/12/2010

DB C API

Page 21

DB->err()

DB->err()

#incl ude <db. h>

voi d

DB->err (DB *db, int error, const char *fnt, ...);
voi d

DB->errx(DB *db, const char *fnt, ...);

The DB_ENV->err(), DB_ENV->errx(), DB->err() and DB->errx() methods provide error-messaging
functionality for applications written using the Berkeley DB library.

The DB->err () and DB_ENV->err() methods construct an error message consisting of the following
elements:

An optional prefix string

If no error callback function has been set using the DB_ENV->set_errcall() method, any prefix string
specified using the DB_ENV->set_errpfx() method, followed by two separating characters: a colon
and a <space> character.

An optional printf-style message

The supplied message fmt, if non-NULL, in which the ANSI C X3.159-1989 (ANSI C) printf function
specifies how subsequent parameters are converted for output.

A separator
Two separating characters: a colon and a <space> character.
A standard error string

The standard system or Berkeley DB library error string associated with the error value, as returned
by the db_strerror method.

The DB- >errx() and DB_ENV- >errx() methods are the same as the DB- >err () and DB_ENV->err() methods,
except they do not append the final separator characters and standard error string to the error message.

This constructed error message is then handled as follows:

If an error callback function has been set (see DB->set_errcall() and DB_ENV->set_errcall()), that
function is called with two parameters: any prefix string specified (see DB->set_errpfx() and
DB_ENV->set_errpfx()) and the error message.

If a C library FILE * has been set (see DB->set_errfile() and DB_ENV->set_errfile()), the error message
is written to that output stream.

If none of these output options have been configured, the error message is written to stderr, the
standard error output stream.

4/12/2010

DB C API Page 22

DB->err()

Parameters
error

The error parameter is the error value for which the DB_ENV->err() and DB- >er r () methods will display
an explanatory string.

fmt

The fmt parameter is an optional printf-style message to display.
Class

DB
See Also

Database and Related Methods

4/12/2010 DB C API Page 23

DB->exists()

DB->eXxists()

#incl ude <db. h>
int
DB- >exi sts(DB *db, DB _TXN *txnid, DBT *key, u_int32_t flags);

The DB- >exi st s() method returns whether the specified key appears in the database.

The DB- >exi st s() method will return DB_NOTFOUND if the specified key is not in the database. The
DB- >exi st s() method will return DB_KEYEMPTY if the database is a Queue or Recno database and the
specified key exists, but was never explicitly created by the application or was later deleted.

Parameters

flags

The flags parameter must be set to zero or by bitwise inclusively OR'ing together one or more of the
following values:

« DB_READ COW TTED
Configure a transactional read operation to have degree 2 isolation (the read is not repeatable).
« DB_READ_UNCOWM TTED

Configure a transactional read operation to have degree 1 isolation, reading modified but not yet
committed data. Silently ignored if the DB_READ_UNCOMMITTED flag was not specified when the
underlying database was opened.

« DB_RWW

Acquire write locks instead of read locks when doing the read, if locking is configured. Setting this
flag can eliminate deadlock during a read-modify-write cycle by acquiring the write lock during the
read part of the cycle so that another thread of control acquiring a read lock for the same item, in
its own read-modify-write cycle, will not result in deadlock.

Because the DB- >exi st s() method will not hold locks across Berkeley DB calls in non-transactional
operations, the DB_RMW flag to the DB- >exi st s() call is meaningful only in the presence of
transactions.

key
The key DBT operated on.
txnid

If the operation is part of an application-specified transaction, the txnid parameter is a transaction
handle returned from DB_ENV->txn_begin(); if the operation is part of a Berkeley DB Concurrent Data
Store group, the txnid parameter is a handle returned from DB_ENV->cdsgroup_begin(); otherwise

4/12/2010

DB C API Page 24

../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND
../../programmer_reference/program_errorret.html#program_errorret.DB_KEYEMPTY

DB->exists()

NULL. If no transaction handle is specified, but the operation occurs in a transactional database, the
operation will be implicitly transaction protected.

Class
DB
See Also

Database and Related Methods

4/12/2010 DB C API Page 25

DB->fd()

DB->fd()

#i ncl ude <db. h>

int

DB->fd(DB *db, int *fdp);
The DB->f d() method provides access to a file descriptor representative of the underlying database.
A file descriptor referring to the same file will be returned to all processes that call DB->open() with
the same file parameter.

This file descriptor may be safely used as a parameter to the fcntl(2) and flock(2) locking functions.

The DB->f d() method only supports a coarse-grained form of locking. Applications should instead use
the Berkeley DB lock manager where possible.

The DB->fd() method returns a non-zero error value on failure and 0 on success.
Parameters

fdp

The fdp parameter references memory into which the current file descriptor is copied.
Class

DB
See Also

Database and Related Methods

4/12/2010 DB C API Page 26

DB->get()

DB->get()

#i ncl ude <db. h>

int
DB- >get (DB *db,
DB TXN *txnid, DBT *key, DBT *data, u_int32_t flags);

int
DB- >pget (DB *db,
DB_TXN *txnid, DBT *key, DBT *pkey, DBT *data, u_int32_t flags);

The DB- >get () method retrieves key/data pairs from the database. The address and length of the data
associated with the specified key are returned in the structure to which data refers.

In the presence of duplicate key values, DB->get () will return the first data item for the designated
key. Duplicates are sorted by:

« Their sort order, if a duplicate sort function was specified.

« Any explicit cursor designated insertion.

» By insert order. This is the default behavior.

Retrieval of duplicates requires the use of cursor operations. See DBcursor->get() for details.

When called on a database that has been made into a secondary index using the DB->associate() method,
the DB- >get () and DB- >pget () methods return the key from the secondary index and the data item
from the primary database. In addition, the DB- >pget () method returns the key from the primary
database. In databases that are not secondary indices, the DB- >pget () method will always fail.

The DB- >get () method will return DB_NOTFOUND if the specified key is not in the database. The

DB- >get () method will return DB_KEYEMPTY if the database is a Queue or Recno database and the
specified key exists, but was never explicitly created by the application or was later deleted. Unless
otherwise specified, the DB- >get () method returns a non-zero error value on failure and 0 on success.

Parameters

data

The data DBT operated on.

flags

The flags parameter must be set to 0 or one of the following values:
« DB_CONSUME

Return the record number and data from the available record closest to the head of the queue, and
delete the record. The record number will be returned in key, as described in DBT. The data will be

4/12/2010

DB C API Page 27

../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND
../../programmer_reference/program_errorret.html#program_errorret.DB_KEYEMPTY

DB->get()

returned in the data parameter. A record is available if it is not deleted and is not currently locked.
The underlying database must be of type Queue for DB_CONSUME to be specified.

DB_CONSUMVE_WAI T

The DB_CONSUME_WAIT flag is the same as the DB_CONSUME flag, except that if the Queue database
is empty, the thread of control will wait until there is data in the queue before returning. The
underlying database must be of type Queue for DB_CONSUME_WAIT to be specified.

If lock or transaction timeouts have been specified, the DB- >get () method with the DB_CONSUME_WAIT
flag may return DB_LOCK_NOTGRANTED. This failure, by itself, does not require the enclosing
transaction be aborted.

DB_GET_BOTH
Retrieve the key/data pair only if both the key and data match the arguments.
When using a secondary index handle, the DB_GET_BOTH: flag causes:

 the DB->pget () version of this method to retun the secondary key/primary key/data tuple only if
both the primary and secondary keys match the arguments.

 the DB->get () version of this method to result in an error.
DB_SET_RECNO

Retrieve the specified numbered key/data pair from a database. Upon return, both the key and data
items will have been filled in.

The data field of the specified key must be a pointer to a logical record number (that is, a
db_recno_t). This record number determines the record to be retrieved.

For DB_SET_RECNO to be specified, the underlying database must be of type Btree, and it must have
been created with the DB_RECNUM flag.

In addition, the following flags may be set by bitwise inclusively OR'ing them into the flags parameter:

« DB_| GNORE_LEASE

Return the data item irrespective of the state of master leases. The item will be returned under all
conditions: if master leases are not configured, if the request is made to a client, if the request is
made to a master with a valid lease, or if the request is made to a master without a valid lease.

DB_MULTI PLE
Return multiple data items in the buffer to which the data parameter refers.

In the case of Btree or Hash databases, all of the data items associated with the specified key are
entered into the buffer. In the case of Queue or Recno databases, all of the data items in the database,
starting at, and subsequent to, the specified key, are entered into the buffer.

4/12/2010

DB C API Page 28

../../programmer_reference/program_errorret.html#program_errorret.DB_LOCK_NOTGRANTED

DB->get()

The buffer to which the data parameter refers must be provided from user memory (see
DB_DBT_USERMEM). The buffer must be at least as large as the page size of the underlying database,
aligned for unsigned integer access, and be a multiple of 1024 bytes in size. If the buffer size is
insufficient, then upon return from the call the size field of the data parameter will have been set
to an estimated buffer size, and the error DB_BUFFER_SMALL is returned. (The size is an estimate
as the exact size needed may not be known until all entries are read. It is best to initially provide a
relatively large buffer, but applications should be prepared to resize the buffer as necessary and
repeatedly call the method.)

The DB_MULTIPLE flag may only be used alone, or with the DB_GET_BOTH and DB_SET_RECNO options.
The DB_MULTIPLE flag may not be used when accessing databases made into secondary indices using
the DB->associate() method.

See the DBT and Bulk Operations for more information on working with bulk get.
« DB_READ COWM TTED

Configure a transactional get operation to have degree 2 isolation (the read is not repeatable).
« DB_READ UNCOWM TTED

Configure a transactional get operation to have degree 1 isolation, reading modified but not yet
committed data. Silently ignored if the DB_READ_UNCOMMITTED flag was not specified when the
underlying database was opened.

« DB_RW

Acquire write locks instead of read locks when doing the read, if locking is configured. Setting this
flag can eliminate deadlock during a read-modify-write cycle by acquiring the write lock during the
read part of the cycle so that another thread of control acquiring a read lock for the same item, in
its own read-modify-write cycle, will not result in deadlock.

Because the DB- >get () method will not hold locks across Berkeley DB calls in non-transactional
operations, the DB_RMW flag to the DB- >get () call is meaningful only in the presence of transactions.

key

The key DBT operated on.

pkey

The pkey parameter is the return key from the primary database.
txnid

If the operation is part of an application-specified transaction, the txnid parameter is a transaction
handle returned from DB_ENV->txn_begin(); if the operation is part of a Berkeley DB Concurrent Data
Store group, the txnid parameter is a handle returned from DB_ENV->cdsgroup_begin(); otherwise
NULL. If no transaction handle is specified, but the operation occurs in a transactional database, the
operation will be implicitly transaction protected.

4/12/2010

DB C API Page 29

DB->get()

Errors

Class

The DB- >get () method may fail and return one of the following non-zero errors:
DB_BUFFER_SMALL

The requested item could not be returned due to undersized buffer.
DB_LOCK_DEADLOCK

A transactional database environment operation was selected to resolve a deadlock.
DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was unable
to grant a lock in the allowed time.

DB_LOCK_NOTGRANTED

The DB_CONSUME_WAI T flag was specified, lock or transaction timers were configured and the lock could
not be granted before the wait-time expired.

DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions to be rolled back.
This invalidates all the database and cursor handles opened in the replication environment. Once this
occurs, an attempt to use such a handle will return DB_REP_HANDLE DEAD. The application will need to
discard the handle and open a new one in order to continue processing.

DB_REP_LEASE_EXPIRED

The operation failed because the site's replication master lease has expired.
DB_REP_LOCKOUT

The operation was blocked by client/master synchronization.
DB_SECONDARY_BAD

A secondary index references a nonexistent primary key.

EINVAL

If a record number of 0 was specified; the DB_THREAD flag was specified to the DB->open() method
and none of the DB_DBT_MALLOC, DB_DBT_REALLOC or DB_DBT_USERMEM flags were set in the DBT;
the DB- >pget () method was called with a DB handle that does not refer to a secondary index; or if an
invalid flag value or parameter was specified.

DB

4/12/2010

DB C API Page 30

DB->get()

See Also

Database and Related Methods

4/12/2010 DB C API Page 31

DB->get_bt_minkey()

DB->get_bt_minkey()

#i ncl ude <db. h>

int
DB- >get bt _m nkey(DB *db, u_int32_t *bt_m nkeyp);

The DB->get bt _ni nkey() method returns the minimum number of key/data pairs intended to be stored
on any single Btree leaf page. This value can be set using the DB->set_bt_minkey() method.

The DB->get bt _mi nkey() method may be called at any time during the life of the application.

The DB->get bt _mi nkey() method returns a non-zero error value on failure and 0 on success.
Parameters

bt_minkeyp

The DB->get _bt _m nkey() method returns the minimum number of key/data pairs intended to be stored
on any single Btree leaf page in bt_minkeyp.

Class
DB
See Also

Database and Related Methods, DB->set_bt_minkey()

4/12/2010 DB C API Page 32

DB->get_byteswapped()

DB->get_byteswapped()

#incl ude <db. h>
int
DB- >get byt eswapped(DB *db, int *isswapped);

The DB- >get byt eswapped() method returns whether the underlying database files were created on an
architecture of the same byte order as the current one, or if they were not (that is, big-endian on a
little-endian machine, or vice versa). This information may be used to determine whether application
data needs to be adjusted for this architecture or not.

The DB- >get byt eswapped() method may not be called before the DB->open() method is called.

The DB- >get byt eswapped() method returns a non-zero error value on failure and 0 on success.

Parameters

Errors

Class

isswapped

If the underlying database files were created on an architecture of the same byte order as the current
one, 0 is stored into the memory location referenced by isswapped. If the underlying database files
were created on an architecture of a different byte order as the current one, 1 is stored into the
memory location referenced by isswapped.

The DB- >get _byt eswapped() method may fail and return one of the following non-zero errors:
EINVAL

If the method was called before DB->open() was called; or if an invalid flag value or parameter was
specified.

DB

See Also

Database and Related Methods

4/12/2010

DB C API Page 33

DB->get_cachesize()

DB->get_cachesize()
#i ncl ude <db. h>

int
DB- >get _cachesi ze(DB *db,
u_int32_t *gbytesp, u_int32_t *bytesp, int *ncachep);

The DB- >get _cachesi ze() method returns the current size and composition of the cache. These values
may be set using the DB->set_cachesize() method.

The DB- >get _cachesi ze() method may be called at any time during the life of the application.

The DB- >get cachesi ze() method returns a non-zero error value on failure and 0 on success.

Parameters
bytesp

The bytesp parameter references memory into which the additional bytes of memory in the cache is
copied.

gbytesp
The gbytesp parameter references memory into which the gigabytes of memory in the cache is copied.
ncachep
The ncachep parameter references memory into which the number of caches is copied.
Class
DB
See Also

Database and Related Methods, DB->set_cachesize()

4/12/2010 DB C API Page 34

DB->get_create_dir()

DB->get_create_dir()
#i ncl ude <db. h>

int
DB->get create dir(DB *db, const char **dirp);

Determine which directory a database file will be created in or was found in.
The DB->get _create_dir() method may be called at any time.

The DB->get _create_dir() method returns a non-zero error value on failure and 0 on success.

Parameters
dirp

The dirp will be set to the directory specified in the call to DB->set_create_dir() method on this handle
or to the directory that the database was found in after DB->open() has been called.

Errors
The DB->get _create_dir() method may fail and return one of the following non-zero errors:
EINVAL
An invalid flag value or parameter was specified.
Class
DB
See Also

Database and Related Methods

4/12/2010 DB C API Page 35

DB->get_dbname()

DB->get_dbname()

#i ncl ude <db. h>

int
DB- >get _dbnane(DB *db, const char **filenamep, const char **dbnanmep);

The DB- >get _dbnane() method returns the filename and database name used by the DB handle.

The DB- >get _dbnane() method returns a non-zero error value on failure and 0 on success.

Parameters
filenamep
The filenamep parameter references memory into which a pointer to the current filename is copied.
dbnamep

The dbnamep parameter references memory into which a pointer to the current database name is

copied.
Class

DB
See Also

Database and Related Methods

4/12/2010 DB C API Page 36

DB->get_encrypt_flags()

DB->get_encrypt_flags()

#i ncl ude <db. h>

int
DB->get _encrypt _flags(DB *db, u_int32_t *flagsp);

The DB->get _encrypt _flags() method returns the encryption flags. This flag can be set using the
DB->set_encrypt() method.

The DB->get _encrypt _flags() method may be called at any time during the life of the application.
The DB->get _encrypt _flags() method returns a non-zero error value on failure and 0 on success.
Parameters
flagsp
The DB->get _encrypt _flags() method returns the encryption flags in flagsp.
Class
DB
See Also

Database and Related Methods, DB->set_encrypt()

4/12/2010 DB C API Page 37

DB->get_errfile()

DB->get_errfile()

#i ncl ude <db. h>

voi d
DB->get errfile(DB *db, FILE **errfilep);

The DB->get _errfile() method returns the FI LE *, as set by the DB->set_errfile() method.
The DB->get _errfile() method may be called at any time during the life of the application.
Parameters
errfilep
The DB->get _errfile() method returns the FILE * in errfilep.
Class
DB

See Also

Database and Related Methods, DB->set_errfile()

4/12/2010 DB C API Page 38

DB->get_errpfx()

DB->get_errpfx()

#incl ude <db. h>
voi d DB->get _errpfx(DB *db, const char **errpfxp);
The DB- >get _errpfx() method returns the error prefix.
The DB- >get _errpfx() method may be called at any time during the life of the application.
Parameters
errpfxp
The DB- >get _errpfx() method returns a reference to the error prefix in errpfxp.
Class
DB
See Also

Database and Related Methods, DB->set_errpfx()

4/12/2010 DB C API Page 39

DB->get_flags()

DB->get_flags()

#i ncl ude <db. h>

int
DB->get flags(DB *db, u_int32_t *flagsp);

The DB->get _flags() method returns the current database flags as set by the DB->set_flags() method.
The DB->get _fl ags() method may be called at any time during the life of the application.
The DB->get _fl ags() method returns a non-zero error value on failure and 0 on success.
Parameters
flagsp
The DB->get _fl ags() method returns the current flags in flagsp.
Class
DB
See Also

Database and Related Methods, DB->set_flags()

4/12/2010 DB C API Page 40

DB->get_h_ffactor()

DB->get_h_ffactor()
#i nclude <db. h>
i nt
DB->get _h_ffactor(DB *db, u_int32_t *h ffactorp);

The DB->get _h_ffactor() method returns the hash table density as set by the DB->set_h_ffactor()

method. The hash table density is the number of items that Berkeley DB tries to place in a hash bucket
before splitting the hash bucket.

The DB->get _h_ffactor() method may be called at any time during the life of the application.

The DB->get _h_ffactor() method returns a non-zero error value on failure and 0 on success.

Parameters

h_ffactorp

The DB->get _h_ffactor() method returns the hash table density in h_ffactorp.
Class

DB

See Also

Database and Related Methods, DB->set_h_ffactor()

4/12/2010 DB C API Page 41

DB->get_h_nelem()

DB->get_h_nelem()

#i ncl ude <db. h>

i nt
DB->get _h_nel em(DB *db, u_int32_t *h_nel enp);

The DB->get _h_nel en{) method returns the estimate of the final size of the hash table as set by the
DB->set_h_nelem() method.

The DB->get _h_nel en{) method may be called at any time during the life of the application.

The DB->get _h_nel en{) method returns a non-zero error value on failure and 0 on success.
Parameters

h_nelemp

The DB->get _h_nel en{) method returns the estimate of the final size of the hash table in h_nelemp.
Class

DB
See Also

Database and Related Methods, DB->set_h_nelem()

4/12/2010 DB C API Page 42

DB->get_lorder()

DB->get_lorder()
#incl ude <db. h>
int
DB->get | order (DB *db, int *|orderp);

The DB- >get | order () method returns the database byte order; a byte order of 4,321 indicates a big

endian order, and a byte order of 1,234 indicates a little endian order. This value is set using the
DB->set_lorder() method.

The DB- >get | order () method may be called at any time during the life of the application.

The DB- >get | order () method returns a non-zero error value on failure and 0 on success.

Parameters

lorderp

The DB->get _| order () method returns the database byte order in lorderp.

Class
DB
See Also
Database and Related Methods, DB->set_lorder()
4/12/2010

DB C API Page 43

DB->get_msgfile()

DB->get_msgfile()

#i ncl ude <db. h>

voi d
DB->get _msgfile(DB *db, FILE **nsgfilep);

The DB->get _nsgfil e() method returns the FI LE * used to output informational or statistical messages.
This file handle is configured using the DB->set_msgfile() method.

The DB->get _msgfil e() method may be called at any time during the life of the application.
Parameters

msgfilep

The DB->get _nsgfil e() method returns the FI LE * in msgfilep.
Class

DB
See Also

Database and Related Methods, DB->set_msgfile()

4/12/2010 DB C API Page 44

DB->get_multiple()

DB->get_multiple()

#i ncl ude <db. h>

int
DB->get _nmultiple(DB *db);

This method returns non-zero if the DB handle references a physical file supporting multiple databases,
and 0 otherwise.

In this case, the DB handle is a handle on a database whose key values are the names of the databases
stored in the physical file and whose data values are opaque objects. No keys or data values may be
modified or stored using the database handle.
This method may not be called before the DB->open() method is called.

Class
DB

See Also

Database and Related Methods

4/12/2010 DB C API Page 45

DB->get_open_flags()

DB->get_open_flags()

#i ncl ude <db. h>

int
DB- >get _open_flags(DB *db, u_int32_t *flagsp);

The DB- >get _open_fl ags() method returns the current open method flags. That is, this method returns
the flags that were specified when DB->open() was called.

The DB->get _open_flags() method may not be called before the DB- >open() method is called.
The DB- >get _open_flags() method returns a non-zero error value on failure and 0 on success.
Parameters
flagsp
The DB- >get _open_flags() method returns the current open method flags in flagsp.
Class
DB
See Also

Database and Related Methods

4/12/2010 DB C API Page 46

DB->get_partition_callback()

DB->get_partition_callback()

#i ncl ude <db. h>

int
DB->get partition_callback(DB *db, u_int32_t *partsp,
u_int32_t (**callback_fcn) (DB *dbp, DBT *key);

The DB->get _partition_cal | back() method returns the partitioning information as set by the
DB->set_partition() method.

The DB->get _partition_cal |l back() method may be called at any time during the life of the application.
The DB->get _partition_cal | back() method returns a non-zero error value on failure and 0 on success.
Parameters
partsp
The DB->get _partition_cal |l back() method returns number of partitions in the partsp parameter.
callback_fcn
The callback_fcn parameter will be set to the partitioning function.
Class
DB
See Also

Database and Related Methods, DB->set_partition()

4/12/2010 DB C API Page 47

DB->get_partition_dirs()

DB->get_partition_dirs()

#i ncl ude <db. h>

int
DB->get partition_dirs(DB *db, const char ***dirsp);

Determine which directorise the database partitions files will be created in or were found in.
The DB->get _partition_dirs() method may be called at any time.

The DB->get _partition_dirs() method returns a non-zero error value on failure and 0 on success.

Parameters

Errors

Class

dirsp

The dirsp will be set to the array of directories specified in the call to DB->set_partition_dirs() method
on this handle or to the directoreies that the database partitions were found in after DB->open() has
been called.

The DB->get _partition_dirs() method may fail and return one of the following non-zero errors:
EINVAL

An invalid flag value or parameter was specified.

DB

See Also

Database and Related Methods

4/12/2010

DB C API Page 48

DB->get_partition_keys()

DB->get_partition_keys()

#i ncl ude <db. h>

int
DB->get partition_keys(DB *db, u_int32_t *partsp, DBT *keysp);

The DB->get _partition_keys() method returns the partitioning information as set by the
DB->set_partition() method.

The DB->get _partition_keys() method may be called at any time during the life of the application.

The DB->get _partition_keys() method returns a non-zero error value on failure and 0 on success.

Parameters

partsp

The DB->get _partition_keys() method returns number of partitions in the partsp parameter.
keysp
The keysp parameter will be set to the array of partitioning keys.
Class
DB

See Also

Database and Related Methods, DB->set_partition()

4/12/2010 DB C API Page 49

DB->get_pagesize()

DB->get_pagesize()
#incl ude <db. h>
int
DB- >get _pagesi ze(DB *db, u_int32_t *pagesizep);

The DB- >get _pagesi ze() method returns the database's current page size, as set by the
DB->set_pagesize() method. Note that if DB- >set _pagesi ze() was not called by your application, then
the default pagesize is selected based on the underlying filesystem 1/0 block size. If you call

DB- >get _pagesi ze() before you have opened the database, the value returned by this method is
therefore the underlying filesystem 1/0 block size.

The DB- >get pagesi ze() method may be called only after the database has been opened.

The DB- >get _pagesi ze() method returns a non-zero error value on failure and 0 on success.
Parameters

pagesizep

The DB- >get _pagesi ze() method returns the page size in pagesizep.

Class

DB
See Also

Database and Related Methods, DB->set_pagesize()
4/12/2010 DB C API

Page 50

DB->get_priority()

DB->get_priority()

#i ncl ude <db. h>

int
DB->get priority(DB *db, DB _CACHE PRICRITY *priorityp);

The DB->get _priority() method returns the cache priority for pages referenced by the DB handle.
This priority value is set using the DB->set_priority() method.

The DB->get _priority() method may be called only after the database has been opened.
The DB->get _priority() method returns a non-zero error value on failure and 0 on success.

Parameters

priorityp

The DB->get _priority() method returns a reference to the cache priority in priorityp. See
DB->set_priority() for a list of possible priorities.

Class
DB
See Also

Database and Related Methods, DB->set_priority()

4/12/2010 DB C API Page 51

DB->get_q_extentsize()

DB->get_q_extentsize()
#i nclude <db. h>

int
DB->get _q_extentsize(DB *db, u_int32_t *extentsizep);

The DB->get _q_extentsi ze() method returns the number of pages in an extent. This value is used only
for Queue databases and is set using the DB->set_q_extentsize() method.

The DB->get _q_extentsi ze() method may be called only after the database has been opened.

The DB->get _q_extentsi ze() method returns a non-zero error value on failure and 0 on success.
Parameters

extentsizep

The DB- >get _q_ext ent si ze() method returns the number of pages in an extent in extentsizep. If used
on a handle that has not yet been opened, 0 is returned.

Class

DB

See Also

Database and Related Methods, DB->set_q_extentsize()

4/12/2010 DB C API Page 52

DB->get_re_delim()

DB->get_re_delim()
#incl ude <db. h>
int
DB->get _re_delin(DB *db, int *delinp);

The DB->get _re_del i {) method returns the delimiting byte, which is used to mark the end of a record

in the backing source file for the Recno access method. This value is set using the DB->set_re_delim()
method.

The DB->get _re_del i m) method may be called only after the database has been opened.
The DB->get re_del i m) method returns a non-zero error value on failure and 0 on success.
Parameters

delimp

The DB->get _re_del i m) method returns the delimiting byte in delimp. If this method is called on a

handle that has not yet been opened, then the default delimiting byte is returned. See
DB->set_re_delim() for details.

Class
DB
See Also
Database and Related Methods, DB->set_re_delim()
4/12/2010 DB C API

Page 53

DB->get_re_len()

DB->get_re_len()

#i ncl ude <db. h>

i nt
DB->get re_len(DB *db, u_int32_t *re_lenp);

The DB->get _re_| en() method returns the length of the records held in a Queue access method database.
This value can be set using the DB->set_re_len() method.

The DB->get _re_| en() method may be called only after the database has been opened.

The DB->get re_| en() method returns a non-zero error value on failure and 0 on success.
Parameters

re_lenp

The DB->get _re_| en() method returns the record length in re_lenp. If the record length has never
been set using DB->set_re_len(), then 0 is returned.

Class
DB
See Also

Database and Related Methods, DB->set_re_len()

4/12/2010 DB C API Page 54

DB->get_re_pad()

DB->get_re_pad()

#i ncl ude <db. h>

int
DB->get _re_pad(DB *db, int *re_padp);

The DB->get _re_pad() method returns the pad character used for short, fixed-length records used by
the Queue and Recno access methods. This character is set using the DB->set_re_pad() method.

The DB->get _re_pad() method may be called only after the database has been opened.

The DB->get re_pad() method returns a non-zero error value on failure and 0 on success.

Parameters

re_padp

The DB->get _re_pad() method returns the pad character in re_padp. If used on a handle that has not
yet been opened, the default pad character is returned. See the DB->set_re_pad() method description
for what that default value is.

Class
DB

See Also

Database and Related Methods, DB->set_re_pad()

4/12/2010 DB C API Page 55

DB->get_re_source()

DB->get_re_source()
#incl ude <db. h>

int
DB->get _re_source(DB *db, const char **sourcep);

The DB->get _re_source() method returns the source file used by the Recno access method. This file
is configured for the Recno access method using the DB->set_re_source() method.

The DB->get _re_source() method may be called only after the database has been opened.
The DB->get _re_source() method returns a non-zero error value on failure and 0 on success.
Parameters
sourcep
The DB->get _re_source() method returns a reference to the source file in sourcep.
Class
DB
See Also

Database and Related Methods, DB->set_re_source()

4/12/2010 DB C API Page 56

DB->get_type()

DB->get_type()
#incl ude <db. h>
int
DB- >get _type(DB *db, DBTYPE *type);

The DB- >get _type() method returns the type of the underlying access method (and file format). The
type value is one of DB_BTREE, DB_HASH, DB_RECNO, or DB_QUEUE. This value may be used to determine
the type of the database after a return from DB->open() with the type parameter set to DB_UNKNOWN.

The DB- >get _type() method may not be called before the DB->open() method is called.

The DB- >get _type() method returns a non-zero error value on failure and 0 on success.

Parameters
type

The type parameter references memory into which the type of the underlying access method is copied.

Errors
The DB->get _type() method may fail and return one of the following non-zero errors:
EINVAL
If the method was called before DB->open() was called; or if an invalid flag value or parameter was
specified.
Class
DB
See Also

Database and Related Methods

4/12/2010 DB C API Page 57

DB->join()

DB->join()
#incl ude <db. h>
int
DB- >j oi n(DB *primary,
DBC **curslist, DBC **dbcp, u_int32_t flags);

The DB- >j 0i n() method creates a specialized join cursor for use in performing equality or natural joins
on secondary indices. For information on how to organize your data to use this functionality, see
Equality join.

The DB- >} oi n() method is called using the DB handle of the primary database.
The join cursor supports only the DBcursor->get() and DBcursor->close() cursor functions:
o DBcursor->get()

Iterates over the values associated with the keys to which each item in curslist was initialized. Any
data value that appears in all items specified by the curslist parameter is then used as a key into
the primary, and the key/data pair found in the primary is returned. The flags parameter must be
set to 0 or the following value:

« DB_JO N | TEM

Do not use the data value found in all the cursors as a lookup key for the primary, but simply
return it in the key parameter instead. The data parameter is left unchanged.

In addition, the following flag may be set by bitwise inclusively OR'ing it into the flags parameter:
« DB_READ_UNCOWM TTED

Configure a transactional join operation to have degree 1 isolation, reading modified but not yet
committed data. Silently ignored if the DB_READ_UNCOMMITTED flag was not specified when the
underlying database was opened.

« DB_RWW

Acquire write locks instead of read locks when doing the read, if locking is configured. Setting this
flag can eliminate deadlock during a read-modify-write cycle by acquiring the write lock during
the read part of the cycle so that another thread of control acquiring a read lock for the same
item, in its own read-modify-write cycle, will not result in deadlock.

o DBcursor->close()

Close the returned cursor and release all resources. (Closing the cursors in curslist is the responsibility
of the caller.)

The DB- >j oi n() method returns a non-zero error value on failure and 0 on success.

4/12/2010 DB C API Page 58

../../programmer_reference/am_cursor.html#am_join

DB->join()

Parameters

Errors

curslist

The curslist parameter contains a NULL terminated array of cursors. Each cursor must have been
initialized to refer to the key on which the underlying database should be joined. Typically, this
initialization is done by a DBcursor->get() call with the DB_SET flag specified. Once the cursors have
been passed as part of a curslist, they should not be accessed or modified until the newly created join
cursor has been closed, or else inconsistent results may be returned.

Joined values are retrieved by doing a sequential iteration over the first cursor in the curslist parameter,
and a nested iteration over each secondary cursor in the order they are specified in the curslist
parameter. This requires database traversals to search for the current datum in all the cursors after
the first. For this reason, the best join performance normally results from sorting the cursors from the
one that refers to the least number of data items to the one that refers to the most. By default,

DB- >j oi n() does this sort on behalf of its caller.

For the returned join cursor to be used in a transaction-protected manner, the cursors listed in curslist
must have been created within the context of the same transaction.

dbcp

The newly created join cursor is returned in the memory location to which dbcp refers.
flags

The flags parameter must be set to 0 or the following value:

« DB_JO N_NOSORT

Do not sort the cursors based on the number of data items to which they refer. If the data are
structured so that cursors with many data items also share many common elements, higher
performance will result from listing those cursors before cursors with fewer data items; that is, a
sort order other than the default. The DB_JOIN_NOSORT flag permits applications to perform join
optimization prior to calling the DB- >j oi n() method.

The DB- >j oi n() method may fail and return one of the following non-zero errors:
DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions to be rolled back.
This invalidates all the database and cursor handles opened in the replication environment. Once this
occurs, an attempt to use such a handle will return DB_REP_HANDLE DEAD. The application will need to
discard the handle and open a new one in order to continue processing.

DB_REP_LOCKOUT

The operation was blocked by client/master synchronization.

4/12/2010

DB C API Page 59

DB->join()

DB_SECONDARY_BAD

A secondary index references a nonexistent primary key.

EINVAL

If cursor methods other than DBcursor->get() or DBcursor->close() were called; or if an invalid flag
value or parameter was specified.

Class
DB

See Also

Database and Related Methods

4/12/2010 DB C API Page 60

DB->key_range()

DB->key_range()

#i ncl ude <db. h>

int
DB- >key range(DB *db, DB _TXN *txnid,
DBT *key, DB KEY RANGE *key range, u_int32_t flags);

The DB- >key_range() method returns an estimate of the proportion of keys that are less than, equal
to, and greater than the specified key. The underlying database must be of type Btree.

The DB- >key_range() method fills in a structure of type DB_KEY_RANGE. The following data fields are
available from the DB_KEY_RANGE structure:

o double less;
A value between 0 and 1, the proportion of keys less than the specified key.
» double equal;
A value between 0 and 1, the proportion of keys equal to the specified key.
o double greater;
A value between 0 and 1, the proportion of keys greater than the specified key.

Values are in the range of 0 to 1; for example, if the field less is 0.05, 5% of the keys in the database
are less than the key parameter. The value for equal will be zero if there is no matching key, and will
be non-zero otherwise.

The DB- >key_range() method returns a non-zero error value on failure and 0 on success.

Parameters

key
The key DBT operated on.
key_range

The estimates are returned in the key_range parameter, which contains three elements of type double:
less, equal, and greater. Values are in the range of 0 to 1; for example, if the field less is 0.05, 5% of
the keys in the database are less than the key parameter. The value for equal will be zero if there is
no matching key, and will be non-zero otherwise.

txnid

If the operation is part of an application-specified transaction, the txnid parameter is a transaction
handle returned from DB_ENV->txn_begin(); if the operation is part of a Berkeley DB Concurrent Data
Store group, the txnid parameter is a handle returned from DB_ENV->cdsgroup_begin(); otherwise
NULL. If no transaction handle is specified, but the operation occurs in a transactional database, the

4/12/2010

DB C API Page 61

DB->key_range()

Errors

Class

operation will be implicitly transaction protected. The DB- >key_range() method does not retain the
locks it acquires for the life of the transaction, so estimates may not be repeatable.

flags

The flags parameter is currently unused, and must be set to 0.

The DB- >key_range() method may fail and return one of the following non-zero errors:
DB_LOCK_DEADLOCK

A transactional database environment operation was selected to resolve a deadlock.
DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was unable
to grant a lock in the allowed time.

DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions to be rolled back.
This invalidates all the database and cursor handles opened in the replication environment. Once this
occurs, an attempt to use such a handle will return DB_REP_HANDLE DEAD. The application will need to
discard the handle and open a new one in order to continue processing.

DB_REP_LOCKOUT
The operation was blocked by client/master synchronization.
EINVAL

If the underlying database was not of type Btree; or if an invalid flag value or parameter was specified.

DB

See Also

Database and Related Methods

4/12/2010

DB C API Page 62

DB->open()

DB->open()

#i ncl ude <db. h>

int
DB- >open(DB *db, DB TXN *txnid, const char *file,
const char *database, DBTYPE type, u_int32_t flags, int node);

The DB- >open() method opens the database represented by the file and database.

The currently supported Berkeley DB file formats (or access methods) are Btree, Hash, Queue, and
Recno. The Btree format is a representation of a sorted, balanced tree structure. The Hash format is
an extensible, dynamic hashing scheme. The Queue format supports fast access to fixed-length records
accessed sequentially or by logical record number. The Recno format supports fixed- or variable-length
records, accessed sequentially or by logical record number, and optionally backed by a flat text file.

Storage and retrieval for the Berkeley DB access methods are based on key/data pairs; see DBT for
more information.

Calling DB- >open() is a relatively expensive operation, and maintaining a set of open databases will
normally be preferable to repeatedly opening and closing the database for each new query.

The DB- >open() method returns a non-zero error value on failure and 0 on success. If DB->open() fails,
the DB->close() method must be called to discard the DB handle.

Parameters

database

The database parameter is optional, and allows applications to have multiple databases in a single
file. Although no database parameter needs to be specified, it is an error to attempt to open a second
database in a file that was not initially created using a database name. Further, the database parameter
is not supported by the Queue format. Finally, when opening multiple databases in the same physical
file, it is important to consider locking and memory cache issues; see Opening multiple databases in a
single file for more information.

If both the database and file parameters are NULL, the database is strictly temporary and cannot be
opened by any other thread of control. Thus the database can only be accessed by sharing the single
database handle that created it, in circumstances where doing so is safe.

If the database parameter is not set to NULL, the database can be opened by other threads of control
and will be replicated to client sites in any replication group, regardless of whether the file parameter
is set to NULL.

file

The file parameter is used as the name of an underlying file that will be used to back the database;
see File naming for more information.

4/12/2010

DB C API Page 63

../../programmer_reference/am_opensub.html
../../programmer_reference/am_opensub.html
../../programmer_reference/env_naming.html

DB->open()

In-memory databases never intended to be preserved on disk may be created by setting the file
parameter to NULL. Whether other threads of control can access this database is driven entirely by
whether the database parameter is set to NULL.

When using a Unicode build on Windows (the default), the file argument will be interpreted as a UTF-8
string, which is equivalent to ASCII for Latin characters.

flags

The flags parameter must be set to zero or by bitwise inclusively OR'ing together one or more of the
following values:

« DB_AUTO COW T

Enclose the DB- >open() call within a transaction. If the call succeeds, the open operation will be
recoverable and all subsequent database modification operations based on this handle will be
transactionally protected. If the call fails, no database will have been created.

« DB_CREATE

Create the database. If the database does not already exist and the DB_CREATE flag is not specified,
the DB- >open() will fail.

« DB_EXCL

Return an error if the database already exists. The DB_EXCL flag is only meaningful when specified
with the DB_CREATE. flag.

o DB_MULTI VERSI ON

Open the database with support for multiversion concurrency control. This will cause updates to the
database to follow a copy-on-write protocol, which is required to support snapshot isolation. The
DB_MULTI VERSI ON flag requires that the database be transactionally protected during its open and is
not supported by the queue format.

« DB_NOVMAP

Do not map this database into process memory (see the DB_ENV->set_mp_mmapsize() method for
further information).

« DB_RDONLY

Open the database for reading only. Any attempt to modify items in the database will fail, regardless
of the actual permissions of any underlying files.

« DB_READ_UNCOMM TTED

Support transactional read operations with degree 1 isolation. Read operations on the database may
request the return of modified but not yet committed data. This flag must be specified on all DB
handles used to perform dirty reads or database updates, otherwise requests for dirty reads may not
be honored and the read may block.

4/12/2010

DB C API Page 64

../../programmer_reference/transapp_read.html

DB->open()

« DB_THREAD

Cause the DB handle returned by DB- >open() to be free-threaded; that is, concurrently usable by
multiple threads in the address space.

« DB_TRUNCATE

Physically truncate the underlying file, discarding all previous databases it might have held. Underlying
filesystem primitives are used to implement this flag. For this reason, it is applicable only to the file
and cannot be used to discard databases within a file.

The DB_TRUNCATE flag cannot be lock or transaction-protected, and it is an error to specify it in a
locking or transaction-protected environment.

mode
On Windows systems, the mode parameter is ignored.

On UNIX systems or in IEEE/ANSI Std 1003.1 (POSIX) environments, files created by the database open
are created with mode mode (as described in chmod(2)) and modified by the process’ umask value at
the time of creation (see umask(2)). Created files are owned by the process owner; the group ownership
of created files is based on the system and directory defaults, and is not further specified by Berkeley
DB. System shared memory segments created by the database open are created with mode mode,
unmodified by the process’ umask value. If mode is 0, the database open will use a default mode of
readable and writable by both owner and group.

txnid

If the operation is part of an application-specified transaction, the txnid parameter is a transaction
handle returned from DB_ENV->txn_begin(); if the operation is part of a Berkeley DB Concurrent Data
Store group, the txnid parameter is a handle returned from DB_ENV->cdsgroup_begin(); otherwise
NULL. If no transaction handle is specified, but the DB_AUTO_COMMIT flag is specified, the operation
will be implicitly transaction protected. Note that transactionally protected operations on a DB handle
requires the DB handle itself be transactionally protected during its open. Also note that the transaction
must be committed before the handle is closed; see Berkeley DB handles for more information.

type

The type parameter is of type DBTYPE, and must be set to one of DB_BTREE, DB_HASH, DB_QUEUE, DB_RECNO,
or DB_UNKNOM. If type is DB_UNKNOWN, the database must already exist and DB- >open() will
automatically determine its type. The DB->get_type() method may be used to determine the underlying
type of databases opened using DB_UNKNOWN.

It is an error to specify the incorrect type for a database that already exists.
Environment Variables

If the database was opened within a database environment, the environment variable DB_HOME may
be used as the path of the database environment home.

4/12/2010 DB C API Page 65

../../programmer_reference/program_scope.html

DB->open()

Errors

DB- >open() is affected by any database directory specified using the DB_ENV->set_data_dir() method,
or by setting the "set_data_dir" string in the environment's DB_CONFIG file.

+ TMPDIR

If the file and dbenv parameters to DB- >open() are NULL, the environment variable TMPDIR may be
used as a directory in which to create temporary backing files

The DB- >open() method may fail and return one of the following non-zero errors:
DB_LOCK_DEADLOCK

A transactional database environment operation was selected to resolve a deadlock.
DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was unable
to grant a lock in the allowed time.

ENOENT

The file or directory does not exist.

ENOENT

A nonexistent re_source file was specified.
DB_OLD_VERSION

The database cannot be opened without being first upgraded.
EEXIST

DB _CREATE and DB_EXCL were specified and the database exists.
EINVAL

If an unknown database type, page size, hash function, pad byte, byte order, or a flag value or parameter
that is incompatible with the specified database was specified; the DB_THREAD flag was specified and
fast mutexes are not available for this architecture; the DB_THREAD flag was specified to DB- >open(),
but was not specified to the DB_ENV- >open() call for the environment in which the DB handle was
created; a backing flat text file was specified with either the DB_THREAD flag or the provided database
environment supports transaction processing; or if an invalid flag value or parameter was specified.

DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions to be rolled back.
This invalidates all the database and cursor handles opened in the replication environment. Once this
occurs, an attempt to use such a handle will return DB_REP_HANDLE_DEAD. The application will need to
discard the handle and open a new one in order to continue processing.

4/12/2010

DB C API Page 66

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

DB->open()

DB_REP_LOCKOUT

The operation was blocked by client/master synchronization.
Class

DB
See Also

Database and Related Methods

4/12/2010 DB C API Page 67

DB->put()

DB->put()

#i ncl ude <db. h>

int
DB- >put (DB *db,
DB TXN *txnid, DBT *key, DBT *data, u_int32_t flags);

The DB- >put () method stores key/data pairs in the database. The default behavior of the DB- >put ()
function is to enter the new key/data pair, replacing any previously existing key if duplicates are
disallowed, or adding a duplicate data item if duplicates are allowed. If the database supports duplicates,
the DB- >put () method adds the new data value at the end of the duplicate set. If the database supports
sorted duplicates, the new data value is inserted at the correct sorted location.

Unless otherwise specified, the DB- >put () method returns a non-zero error value on failure and 0 on
success.

Parameters

flags
The flags parameter must be set to 0 or one of the following values:
« DB _APPEND

Append the key/data pair to the end of the database. For the DB_APPEND flag to be specified, the
underlying database must be a Queue or Recno database. The record number allocated to the record
is returned in the specified key.

There is a minor behavioral difference between the Recno and Queue access methods for the
DB_APPEND flag. If a transaction enclosing a DB- >put () operation with the DB_APPEND flag aborts,
the record number may be reallocated in a subsequent DB_APPEND operation if you are using the
Recno access method, but it will not be reallocated if you are using the Queue access method.

» DB_NCDUPDATA

In the case of the Btree and Hash access methods, enter the new key/data pair only if it does not
already appear in the database.

The DB_NODUPDATA flag may only be specified if the underlying database has been configured to
support sorted duplicates. The DB_NODUPDATA flag may not be specified to the Queue or Recno
access methods.

The DB- >put () method will return DB_KEYEXIST if DB_NODUPDATA is set and the key/data pair already
appears in the database.

» DB_NOOVERVRI TE

Enter the new key/data pair only if the key does not already appear in the database. The DB- >put ()
method call with the DB_NOOVERWRITE flag set will fail if the key already exists in the database,
even if the database supports duplicates.

4/12/2010

DB C API Page 68

DB->put()

The DB- >put () method will return DB_KEYEXIST if DB_NOOVERWRITE is set and the key already
appears in the database.

This enforcement of uniqueness of keys applies only to the primary key. The behavior of insertions
into secondary databases is not affected by the DB_NOOVERWRITE flag. In particular, the insertion
of a record that would result in the creation of a duplicate key in a secondary database that allows
duplicates would not be prevented by the use of this flag.

DB_MULTI PLE

Put multiple data items using keys from the buffer to which the key parameter refers and data values
from the buffer to which the data parameter refers.

To put records in bulk with the btree or hash access methods, construct bulk buffers in the key and
data DBT using DB_MULTIPLE_WRITE_INIT and DB_MULTIPLE_WRITE_NEXT. To put records in bulk
with the recno or queue access methods, construct bulk buffers in the data DBT as before, but
construct the key DBT using DB_MULTIPLE_RECNO_WRITE_INIT and DB_MULTIPLE_RECNO_WRITE_NEXT
with a data size of zero.

A successful bulk operation is logically equivalent to a loop through each key/data pair, performing
a DB->put() for each one.

See DBT and Bulk Operations for more information on working with bulk updates.

The DB_MULTI PLE flag may only be used alone, or with the DB_OVERWRI TE_DUP option.

DB_MULTI PLE_KEY

Put multiple data items using keys and data from the buffer to which the key parameter refers.

To put records in bulk with the btree or hash access methods, construct a single bulk buffer in the
key DBT using DB_MULTIPLE_WRITE_INIT and DB_MULTIPLE_KEY_WRITE_NEXT. To put records in bulk
with the recno or queue access methods, construct a bulk buffer in the key DBT using
DB_MULTIPLE_RECNO_WRITE_INIT and DB_MULTIPLE_RECNO_WRITE_NEXT.

See DBT and Bulk Operations for more information on working with bulk updates.

The DB_MJULTI PLE KEY flag may only be used alone, or with the DB_OVERWRI TE_DUP option.
DB_OVERVR TE_DUP

Ignore duplicate records when overwriting records in a database configured for sorted duplicates.

Normally, if a database is configured for sorted duplicates, an attempt to put a record that compares
identically to a record already existing in the database will fail. Using this flag causes the put to
silently proceed, without failure.

This flag is extremely useful when performing bulk puts (using the DB MJLTI PLE or DB_MJLTI PLE_KEY
flags). Depending on the number of records you are writing to the database with a bulk put, you may
not want the operation to fail in the event that a duplicate record is encountered. Using this flag

4/12/2010

DB C API Page 69

DB->put()

Errors

along with the DB_MULTI PLE or DB_MULTI PLE_KEY flags allows the bulk put to complete, even if a
duplicate record is encountered.

This flag is also useful if you are using a custom comparison function that compares only part of the
data portion of a record. In this case, two records can compare equally when, in fact, they are not
equal. This flag allows the put to complete, even if your custom comparison routine claims the two
records are equal.

data

The data DBT operated on.
key

The key DBT operated on.
txnid

If the operation is part of an application-specified transaction, the txnid parameter is a transaction
handle returned from DB_ENV->txn_begin(); if the operation is part of a Berkeley DB Concurrent Data
Store group, the txnid parameter is a handle returned from DB_ENV->cdsgroup_begin(); otherwise
NULL. If no transaction handle is specified, but the operation occurs in a transactional database, the
operation will be implicitly transaction protected.

The DB->put () method may fail and return one of the following non-zero errors:
DB_FOREIGN_CONFLICT
A foreign key constraint violation has occurred. This can be caused by one of two things:

1. An attempt was made to add a record to a constrained database, and the key used for that record
does not exist in the foreign key database.

2. DB_FOREIGN_ABORT (page 10) was declared for a foreign key database, and then subsequently a
record was deleted from the foreign key database without first removing it from the constrained
secondary database.

DB_LOCK_DEADLOCK
A transactional database environment operation was selected to resolve a deadlock.
DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was unable
to grant a lock in the allowed time.

DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions to be rolled back.
This invalidates all the database and cursor handles opened in the replication environment. Once this

4/12/2010

DB C API Page 70

DB->put()

Class

occurs, an attempt to use such a handle will return DB_REP_HANDLE DEAD. The application will need to
discard the handle and open a new one in order to continue processing.

DB_REP_LOCKOUT

The operation was blocked by client/master synchronization.
EACCES

An attempt was made to modify a read-only database.
EINVAL

If a record number of 0 was specified; an attempt was made to add a record to a fixed-length database
that was too large to fit; an attempt was made to do a partial put; an attempt was made to add a
record to a secondary index; or if an invalid flag value or parameter was specified.

ENOSPC

A btree exceeded the maximum btree depth (255).

DB

See Also

Database and Related Methods

4/12/2010

DB C API Page 71

DB->remove()

DB->remove()

#i ncl ude <db. h>

int
DB- >r enove(DB *db,
const char *file, const char *database, u_int32_t flags);

The DB- >renpve() method removes the database specified by the file and database parameters. If no
database is specified, the underlying file represented by file is removed, incidentally removing all of
the databases it contained.

Applications should never remove databases with open DB handles, or in the case of removing a file,
when any database in the file has an open handle. For example, some architectures do not permit the
removal of files with open system handles. On these architectures, attempts to remove databases
currently in use by any thread of control in the system may fail.

The DB- >renove() method should not be called if the remove is intended to be transactionally safe;
the DB_ENV->dbremove() method should be used instead.

The DB->remove() method may not be called after calling the DB->open() method on any DB handle.
If the DB->open() method has already been called on a DB handle, close the existing handle and create
a new one before calling DB- >renove. ()

The DB handle may not be accessed again after DB- >renove() is called, regardless of its return.

The DB- >renove() method returns a non-zero error value on failure and 0 on success.

Parameters

database
The database parameter is the database to be removed.
file

The file parameter is the physical file which contains the database(s) to be removed.

Environment Variables

Errors

If the database was opened within a database environment, the environment variable DB_HOVE may be
used as the path of the database environment home.

DB- >renove() is affected by any database directory specified using the DB_ENV->set_data_dir() method,
or by setting the "set_data_dir" string in the environment's DB_CONFIG file.

The DB- >renove() method may fail and return one of the following non-zero errors:

4/12/2010

DB C API Page 72

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

DB->remove()

EINVAL

If the method was called after DB->open() was called; or if an invalid flag value or parameter was
specified.

ENOENT

The file or directory does not exist.

Class
DB

See Also

Database and Related Methods

4/12/2010 DB C API Page 73

DB->rename()

DB->rename()

#i ncl ude <db. h>

int
DB- >rename(DB *db, const char *file,
const char *database, const char *newnane, u_int32_t flags);

The DB- >rename() method renames the database specified by the file and database parameters to
newname. If no database is specified, the underlying file represented by file is renamed, incidentally
renaming all of the databases it contained.

Applications should not rename databases that are currently in use. If an underlying file is being renamed
and logging is currently enabled in the database environment, no database in the file may be open
when the DB- >renane() method is called. In particular, some architectures do not permit renaming
files with open handles. On these architectures, attempts to rename databases that are currently in
use by any thread of control in the system may fail.

The DB- >rename() method should not be called if the rename is intended to be transactionally safe;
the DB_ENV->dbrename() method should be used instead.

The DB- >rename() method may not be called after calling the DB->open() method on any DB handle.
If the DB->open() method has already been called on a DB handle, close the existing handle and create
a new one before calling DB- >r enange() .

The DB handle may not be accessed again after DB- >r enange() is called, regardless of its return.

The DB- >renanme() method returns a non-zero error value on failure and 0 on success.

Parameters

database

The database parameter is the database to be renamed.

file

The file parameter is the physical file which contains the database(s) to be renamed.

When using a Unicode build on Windows (the default), the file argument will be interpreted as a UTF-8
string, which is equivalent to ASCII for Latin characters.

flags
The flags parameter is currently unused, and must be set to 0.
newname

The newname parameter is the new name of the database or file.

4/12/2010

DB C API Page 74

DB->rename()

Environment Variables

Errors

Class

If the database was opened within a database environment, the environment variable DB_HOVE may be
used as the path of the database environment home.

DB- >r enane() is affected by any database directory specified using the DB_ENV->set_data_dir() method,
or by setting the "set_data_dir" string in the environment's DB_CONFIG file.

The DB->renane() method may fail and return one of the following non-zero errors:
EINVAL

If the method was called after DB->open() was called; or if an invalid flag value or parameter was
specified.

ENOENT

The file or directory does not exist.

DB

See Also

Database and Related Methods

4/12/2010

DB C API Page 75

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

DB->set_alloc()

DB->set_alloc()

Errors

#i ncl ude <db. h>

int

DB- >set _al | oc(DB *db,
void *(*app_mal |l oc)(size_t),
void *(*app_realloc)(void *, size_t),
void (*app_free)(void *));

Set the allocation functions used by the DB_ENV and DB methods to allocate or free memory owned
by the application.

There are a number of interfaces in Berkeley DB where memory is allocated by the library and then
given to the application. For example, the DB_DBT_MALLOC flag, when specified in the DBT object,
will cause the DB methods to allocate and reallocate memory which then becomes the responsibility
of the calling application. (See DBT for more information.) Other examples are the Berkeley DB interfaces
which return statistical information to the application: DB->stat(), DB_ENV->lock_stat(),
DB_ENV->log_archive(), DB_ENV->log_stat(), DB_ENV->memp_stat(), and DB_ENV->txn_stat(). There is
one method in Berkeley DB where memory is allocated by the application and then given to the library:
DB->associate().

On systems in which there may be multiple library versions of the standard allocation routines (notably
Windows NT), transferring memory between the library and the application will fail because the Berkeley
DB library allocates memory from a different heap than the application uses to free it. To avoid this
problem, the DB_ENV->set_alloc() and DB- >set _al | oc() methods can be used to pass Berkeley DB
references to the application’s allocation routines.

It is not an error to specify only one or two of the possible allocation function parameters to these
interfaces; however, in that case the specified interfaces must be compatible with the standard library
interfaces, as they will be used together. The functions specified must match the calling conventions
of the ANSI C X3.159-1989 (ANSI C) library routines of the same name.

Because databases opened within Berkeley DB environments use the allocation interfaces specified to
the environment, it is an error to attempt to set those interfaces in a database created within an
environment.

The DB->set _al | oc() method may not be called after the DB->open() method is called.

The DB->set _al | oc() method returns a non-zero error value on failure and 0 on success.

The DB->set _al | oc() method may fail and return one of the following non-zero errors:
EINVAL

If called in a database environment, or called after DB->open() was called; or if an invalid flag value
or parameter was specified.

4/12/2010

DB C API Page 76

DB->set_alloc()

Class
DB
See Also

Database and Related Methods

4/12/2010 DB C API Page 77

DB->set_append_recno()

DB->set_append_recno()

#i ncl ude <db. h>

int
DB- >set _append_recno(DB *,
int (*db_append_recno_fcn) (DB *dbp, DBT *data, db_recno_t recno));

When using the DB_APPEND option of the DB->put() method, it may be useful to modify the stored data
based on the generated key. If a callback function is specified using the DB- >set _append_recno()
method, it will be called after the record number has been selected, but before the data has been
stored.

The DB- >set _append_recno() method configures operations performed using the specified DB handle,
not all operations performed on the underlying database.

The DB- >set _append_recno() method may not be called after the DB->open() method is called.

The DB- >set _append_recno() method returns a non-zero error value on failure and 0 on success.

|:| Berkeley DB is not re-entrant. Callback functions should not attempt to make library calls (for
example, to release locks or close open handles). Re-entering Berkeley DB is not guaranteed to
work correctly, and the results are undefined.

Parameters

db_append_recno_fcn

The db_append_recno_fcn parameter is a function to call after the record number has been selected
but before the data has been stored into the database. The function takes three parameters:

o dbp

The dbp parameter is the enclosing database handle.
e data

The data parameter is the data DBT to be stored.
e recno

The recno parameter is the generated record number.

The called function may modify the data DBT. If the function needs to allocate memory for the data
field, the flags field of the returned DBT should be set to DB DBT_APPMALLCC, which indicates that
Berkeley DB should free the memory when it is done with it.

The callback function must return 0 on success and errno or a value outside of the Berkeley DB error
name space on failure.

4/12/2010

DB C API Page 78

DB->set_append_recno()

Errors

The DB- >set _append_recno() method may fail and return one of the following non-zero errors:

EINVAL
If the method was called after DB->open() was called; or if an invalid flag value or parameter was
specified.

Class
DB

See Also
Database and Related Methods

4/12/2010

DB C API Page 79

DB->set_bt_compare()

DB->set_bt_compare()

#i ncl ude <db. h>

int
DB- >set bt _conpare(DB *db,
int (*bt_conpare_fcn)(DB *db, const DBT *dbt1, const DBT *dbt2));

Set the Btree key comparison function. The comparison function is called whenever it is necessary to
compare a key specified by the application with a key currently stored in the tree.

If no comparison function is specified, the keys are compared lexically, with shorter keys collating
before longer keys.

The DB->set _bt _conpar e() method configures operations performed using the specified DB handle, not
all operations performed on the underlying database.

The DB->set _bt _conpare() method may not be called after the DB->open() method is called. If the
database already exists when DB->open() is called, the information specified to DB- >set bt conpare()
must be the same as that historically used to create the database or corruption can occur.

The DB->set _bt _conpare() method returns a non-zero error value on failure and 0 on success.

Parameters

bt_compare_fcn

The bt_compare_fcn function is the application-specified Btree comparison function. The comparison
function takes three parameters:

e db

The db parameter is the enclosing database handle.
o dbtl

The dbt1 parameter is the DBT representing the application supplied key.
o dbt2

The dbt2 parameter is the DBT representing the current tree's key.

The bt_compare_fcn function must return an integer value less than, equal to, or greater than zero
if the first key parameter is considered to be respectively less than, equal to, or greater than the
second key parameter. In addition, the comparison function must cause the keys in the database to
be well-ordered. The comparison function must correctly handle any key values used by the application
(possibly including zero-length keys). In addition, when Btree key prefix comparison is being performed
(see DB->set_bt_prefix() for more information), the comparison routine may be passed a prefix of any
database key. The data and size fields of the DBT are the only fields that may be used for the purposes
of this comparison, and no particular alignment of the memory to which by the data field refers may
be assumed.

4/12/2010

DB C API Page 80

DB->set_bt_compare()

Errors

The DB->set _bt _conpare() method may fail and return one of the following non-zero errors:

EINVAL
If the method was called after DB->open() was called; or if an invalid flag value or parameter was
specified.

Class
DB

See Also
Database and Related Methods

4/12/2010

DB C API Page 81

DB->set_bt_compress()

DB->set_bt_compress()

#i ncl ude <db. h>

int
DB- >set bt _conpress(DB *db,
int (*bt_conpress_fcn) (DB *db, const DBT *prevKey,
const DBT *prevData, const DBT *key, const DBT *data, DBT *dest),
int (*bt_deconpress_fcn)(DB *db, const DBT *prevKey,
const DBT *prevData, DBT *conpressed, DBT *destKey,
DBT *destData));

Set the Btree compression and decompression functions. The compression function is called whenever
a key/data pair is added to the tree and the decompression function is called whenever data is requested
from the tree.

If NULL function pointers are specified, then default compression and decompression functions are
used. Berkeley DB's default compression function performs prefix compression on all keys and prefix
compression on data values for duplicate keys. If using default compression, both the default compression
and decompression functions must be used.

The DB->set _bt _conpress() method configures operations performed using the specified DB handle,
not all operations performed on the underlying database.

The DB->set _bt _conpress() method may not be called after the DB->open() method is called. If the
database already exists when DB->open() is called, the information specified to DB- >set bt conpress()
must be the same as that historically used to create the database or corruption can occur.

The DB->set _bt _conpress() method returns a non-zero error value on failure and 0 on success.

Parameters

bt_compress_fcn

The bt_compress_fcn function is the application-specified Btree compression function. The compression
function takes six parameters:

e db
The db parameter is the enclosing database handle.
e prevkey

The prevKey parameter is the DBT representing the key immediately preceding the application
supplied key.

e prevData
The prevData parameter is the DBT representing the data associated with prevKey.

o key

4/12/2010

DB C API Page 82

DB->set_bt_compress()

The key parameter is the DBT representing the application supplied key.
- data

The data parameter is the DBT representing the application supplied data.
« dest

The dest parameter is the DBT representing the data stored in the tree, where the function should
write the compressed data.

The bt_compress_fcn function must return 0 on success and a non-zero value on failure. If the
compressed data cannot fit in dest->data (the size of which is stored in dest->ulen), the function
should identify the required buffer size in dest->size and return DB_BUFFER SMALL.

bt_decompress_fcn

The bt_decompress_fcn function is the application-specified Btree decompression function. The
decompression function takes six parameters:

e db
The db parameter is the enclosing database handle.
e prevKey

The prevKey parameter is the DBT representing the key immediately preceding the key being
decompressed.

e prevData
The prevData parameter is the DBT representing the data associated with prevKey.
e conpressed

The compressed parameter is the DBT representing the data stored in the tree, that is, the
compressed data.

o key

The key parameter is the DBT where the decompression function should store the decompressed
key.

e data

The data parameter is the DBT where the decompression function should store the decompressed
key.

The bt_decompress_fcn function must return 0 on success and a non-zero value on failure. If the
decompressed data cannot fit in key->data or data->data (the size of which is available in the DBT's
ulen field), the function should identify the required buffer size using the DBT's size field and return
DB _BUFFER SMALL.

4/12/2010

DB C API Page 83

DB->set_bt_compress()

Errors

The DB->set _bt _conpress() method may fail and return one of the following non-zero errors:

EINVAL
If the method was called after DB->open() was called; or if an invalid flag value or parameter was
specified.

Class
DB

See Also
Database and Related Methods

4/12/2010

DB C API Page 84

DB->set_bt_minkey()

DB->set_bt_minkey()

#i nclude <db. h>
i nt
DB->set bt _m nkey(DB *db, u_int32_t bt _m nkey);
Set the minimum number of key/data pairs intended to be stored on any single Btree leaf page.

This value is used to determine if key or data items will be stored on overflow pages instead of Btree
leaf pages. For more information on the specific algorithm used, see Minimum keys per page. The
bt_minkey value specified must be at least 2; if bt_minkey is not explicitly set, a value of 2 is used.

The DB->set _bt _m nkey() method configures a database, not only operations performed using the
specified DB handle.

The DB->set _bt _m nkey() method may not be called after the DB->open() method is called. If the
database already exists when DB->open() is called, the information specified to DB- >set _bt _ni nkey()
will be ignored.

The DB->set _bt _ni nkey() method returns a non-zero error value on failure and 0 on success.

Parameters

Errors

Class

bt_minkey

The bt_minkey parameter is the minimum number of key/data pairs intended to be stored on any
single Btree leaf page.

The DB->set _bt _m nkey() method may fail and return one of the following non-zero errors:
EINVAL

If the method was called after DB->open() was called; or if an invalid flag value or parameter was
specified.

DB

See Also

Database and Related Methods

4/12/2010

DB C API Page 85

../../programmer_reference/bt_conf.html#am_conf_bt_minkey

DB->set_bt_prefix()

DB->set_bt_prefix()

#i ncl ude <db. h>

int
DB->set bt _prefix(DB *db,
size t (*bt_prefix_fcn)(DB *, const DBT *, const DBT *));

Set the Btree prefix function. The prefix function is used to determine the amount by which keys stored
on the Btree internal pages can be safely truncated without losing their uniqueness. See the Btree
prefix comparison section of the Berkeley DB Reference Guide for more details about how this works.
The usefulness of this is data-dependent, but can produce significantly reduced tree sizes and search
times in some data sets.

If no prefix function or key comparison function is specified by the application, a default lexical
comparison function is used as the prefix function. If no prefix function is specified and a key comparison
function is specified, no prefix function is used. It is an error to specify a prefix function without also
specifying a Btree key comparison function.

The DB->set _bt _prefix() method configures operations performed using the specified DB handle, not
all operations performed on the underlying database.

The DB->set _bt _prefix() method may not be called after the DB->open() method is called. If the
database already exists when DB->open() is called, the information specified to DB- >set _bt _prefi x()
must be the same as that historically used to create the database or corruption can occur.

The DB->set _bt _prefix() method returns a non-zero error value on failure and 0 on success.

Parameters

bt_prefix_fcn

The bt_prefix_fcn function is the application-specific Btree prefix function. The prefix function takes
three parameters:

e db

The db parameter is the enclosing database handle.
o dbtl

The dbt1 parameter is a DBT representing a database key.
o dbt2

The dbt2 parameter is a DBT representing a database key.

The bt_prefix_fcn function must return the number of bytes of the second key parameter that would
be required by the Btree key comparison function to determine the second key parameter's ordering

relationship with respect to the first key parameter. If the two keys are equal, the key length should
be returned. The prefix function must correctly handle any key values used by the application (possibly

4/12/2010

DB C API Page 86

../../programmer_reference/bt_conf.html#am_conf_bt_prefix
../../programmer_reference/bt_conf.html#am_conf_bt_prefix

DB->set_bt_prefix()

including zero-length keys). The data and size fields of the DBT are the only fields that may be used
for the purposes of this determination, and no particular alignment of the memory to which the data
field refers may be assumed.

Errors

The DB->set bt _prefix() method may fail and return one of the following non-zero errors:

EINVAL
If the method was called after DB->open() was called; or if an invalid flag value or parameter was
specified.

Class
DB

See Also
Database and Related Methods

4/12/2010 DB C API

Page 87

DB->set_cachesize()

DB->set_cachesize()

#i ncl ude <db. h>

int
DB- >set _cachesi ze(DB *db,
u_int32_t gbytes, u_int32_t bytes, int ncache);

Set the size of the shared memory buffer pool -- that is, the cache. The cache should be the size of
the normal working data set of the application, with some small amount of additional memory for
unusual situations. (Note: the working set is not the same as the number of pages accessed
simultaneously, and is usually much larger.)

The default cache size is 256KB, and may not be specified as less than 20KB. Any cache size less than
500MB is automatically increased by 25% to account for buffer pool overhead; cache sizes larger than
500MB are used as specified. The maximum size of a single cache is 4GB on 32-bit systems and 10TB
on 64-bit systems. (All sizes are in powers-of-two, that is, 256KB is 2"18 not 256,000.) For information
on tuning the Berkeley DB cache size, see Selecting a cache size.

It is possible to specify caches to Berkeley DB large enough they cannot be allocated contiguously on
some architectures. For example, some releases of Solaris limit the amount of memory that may be
allocated contiguously by a process. If ncache is 0 or 1, the cache will be allocated contiguously in
memory. If it is greater than 1, the cache will be split across ncache separate regions, where the
region size is equal to the initial cache size divided by ncache.

Because databases opened within Berkeley DB environments use the cache specified to the environment,
it is an error to attempt to set a cache in a database created within an environment.

The DB- >set _cachesi ze() method may not be called after the DB->open() method is called.

The DB- >set _cachesi ze() method returns a non-zero error value on failure and 0 on success.

Parameters

Errors

bytes

The size of the cache is set to gbytes gigabytes plus bytes.
gbytes

The size of the cache is set to gbytes gigabytes plus bytes.
ncache

The ncache parameter is the number of caches to create.

The DB- >set _cachesi ze() method may fail and return one of the following non-zero errors:

4/12/2010

DB C API Page 88

../../programmer_reference/general_am_conf.html#am_conf_cachesize

DB->set_cachesize()

EINVAL

If the specified cache size was impossibly small; the method was called after DB->open() was called;
or if an invalid flag value or parameter was specified.

Class
DB
See Also

Database and Related Methods

4/12/2010 DB C API Page 89

DB->set_create_dir()

DB->set_create_dir()
#i ncl ude <db. h>

int
DB->set create dir(DB *db, const char *dir);

Specify which directory a database should be created in or looked for.
The DB->set _create_dir() method may not be called after the DB->open() method is called.

The DB->set _create_dir() method returns a non-zero error value on failure and 0 on success.

Parameters
dir

The dir will be used to create or locate the database file specified in the DB->open() method call. The
directory must be one of the directories in the environment list specified by DB_ENV->add_data_dir().

Errors
The DB->set _create_dir() method may fail and return one of the following non-zero errors:
EINVAL
An invalid flag value or parameter was specified.
Class
DB
See Also

Database and Related Methods

4/12/2010 DB C API Page 90

DB->set_dup_compare()

DB->set_dup_compare()

#i ncl ude <db. h>

int
DB- >set _dup_conpare(DB *db,
int (*dup_conpare_fcn)(DB *db, const DBT *dbt, const DBT *dbt2));

Set the duplicate data item comparison function. The comparison function is called whenever it is
necessary to compare a data item specified by the application with a data item currently stored in the
database. Calling DB->set _dup_conpare() implies calling DB->set_flags() with the DB_DUPSORT flag.

If no comparison function is specified, the data items are compared lexically, with shorter data items
collating before longer data items.

The DB- >set _dup_conpar e() method may not be called after the DB->open() method is called. If the
database already exists when DB->open() is called, the information specified to DB- >set _dup_conpare()
must be the same as that historically used to create the database or corruption can occur.

The DB- >set _dup_conpar e() method returns a non-zero error value on failure and 0 on success.

Parameters

Errors

dup_compare_fcn

The dup_compare_fcn function is the application-specified duplicate data item comparison function.
The function takes three arguments:

o db

The db parameter is the enclosing database handle.
o dbtl

The dbt1 parameter is a DBT representing the application supplied data item.
o dbt2

The dbt2 parameter is a DBT representing the current tree's data item.

The dup_compare_fcn function must return an integer value less than, equal to, or greater than zero
if the first data item parameter is considered to be respectively less than, equal to, or greater than
the second data item parameter. In addition, the comparison function must cause the data items in
the set to be well-ordered. The comparison function must correctly handle any data item values used
by the application (possibly including zero-length data items). The data and size fields of the DBT are
the only fields that may be used for the purposes of this comparison, and no particular alignment of
the memory to which the data field refers may be assumed.

The DB- >set _dup_conpar e() method may fail and return one of the following non-zero errors:

4/12/2010

DB C API Page 91

DB->set_dup_compare()

EINVAL

An invalid flag value or parameter was specified.
Class

DB
See Also

Database and Related Methods

4/12/2010 DB C API Page 92

DB->set_encrypt()

DB->set_encrypt()

#i ncl ude <db. h>

int
DB- >set _encrypt (DB *db, const char *passwd, u_int32_t flags);

Set the password used by the Berkeley DB library to perform encryption and decryption.

Because databases opened within Berkeley DB environments use the password specified to the
environment, it is an error to attempt to set a password in a database created within an environment.

The DB->set _encrypt () method may not be called after the DB->open() method is called.

The DB- >set _encrypt () method returns a non-zero error value on failure and 0 on success.
Parameters

flags

The flags parameter must be set to 0 or the following value:

« DB_ENCRYPT AES

Use the Rijndael/AES (also known as the Advanced Encryption Standard and Federal Information
Processing Standard (FIPS) 197) algorithm for encryption or decryption.

passwd

The passwd parameter is the password used to perform encryption and decryption.
Errors

The DB->set _encrypt () method may fail and return one of the following non-zero errors:

EINVAL

If the method was called after DB->open() was called; or if an invalid flag value or parameter was
specified.

EOPNOTSUPP

Cryptography is not available in this Berkeley DB release.
Class

DB
See Also

Database and Related Methods

4/12/2010 DB C API Page 93

DB->set_errcall()

DB->set_errcall()

#i ncl ude <db. h>

voi d
DB->set _errcal | (DB *, void (*db_errcall _fcn)
(const DB _ENV *dbenv, const char *errpfx, const char *msg));

When an error occurs in the Berkeley DB library, a Berkeley DB error or an error return value is returned
by the interface. In some cases, however, the errno value may be insufficient to completely describe
the cause of the error, especially during initial application debugging.

The DB_ENV->set_errcall() and DB- >set _errcal | () methods are used to enhance the mechanism for
reporting error messages to the application. In some cases, when an error occurs, Berkeley DB will call
db_errcall_fen() with additional error information. It is up to the db_errcall_fcn() function to display
the error message in an appropriate manner.

Setting db_errcall_fcn to NULL unconfigures the callback interface.

Alternatively, you can use the DB->set_errfile() or DB->set_errfile() methods to display the additional
information via a C library FI LE *.

This error-logging enhancement does not slow performance or significantly increase application size,
and may be run during normal operation as well as during application debugging.

For DB handles opened inside of Berkeley DB environments, calling the DB->set _errcal | () method
affects the entire environment and is equivalent to calling the DB_ENV->set_errcall() method.

When used on a database that was not opened in an environment, the DB->set _errcal | () method
configures operations performed using the specified DB handle, not all operations performed on the
underlying database.

The DB->set _errcal | () method may be called at any time during the life of the application.

|:| Berkeley DB is not re-entrant. Callback functions should not attempt to make library calls (for
example, to release locks or close open handles). Re-entering Berkeley DB is not guaranteed to
work correctly, and the results are undefined.

Parameters

db_errcall_fcn

The db_errcall_fcn parameter is the application-specified error reporting function. The function takes
three parameters:

 dbenv
The dbenv parameter is the enclosing database environment.

e errpfx

4/12/2010

DB C API Page 94

DB->set_errcall()

The errpfx parameter is the prefix string (as previously set by DB->set_errpfx() or DB_ENV->set_errpfx()

).
. MBQ
The msg parameter is the error message string.
Class
DB
See Also

Database and Related Methods

4/12/2010 DB C API Page 95

DB->set_errfile()

DB->set_errfile()

#i ncl ude <db. h>

voi d
DB->set errfile(DB *db, FILE *errfile);

When an error occurs in the Berkeley DB library, a Berkeley DB error or an error return value is returned
by the interface. In some cases, however, the errno value may be insufficient to completely describe
the cause of the error, especially during initial application debugging.

The DB_ENV->set_errfile() and DB->set _errfile() methods are used to enhance the mechanism for
reporting error messages to the application by setting a C library FILE * to be used for displaying
additional Berkeley DB error messages. In some cases, when an error occurs, Berkeley DB will output
an additional error message to the specified file reference.

Alternatively, you can use the DB_ENV->set_errcall() or DB->set_errcall() methods to capture the
additional error information in a way that does not use C library FILE *'s.

The error message will consist of the prefix string and a colon (":") (if a prefix string was previously
specified using DB->set_errpfx() or DB_ENV->set_errpfx()), an error string, and a trailing <newline>
character.

The default configuration when applications first create DB or DB_ENV handles is as if the
DB_ENV->set_errfile() or DB->set _errfil e() methods were called with the standard error output (stderr)
specified as the FILE * argument. Applications wanting no output at all can turn off this default
configuration by calling the DB_ENV->set_errfile() or DB- >set _errfil e() methods with NULL as the
FILE * argument. Additionally, explicitly configuring the error output channel using any of the following
methods will also turn off this default output for the application:

e DB->set_errfile()

o DB_ENV->set_errfile()
o DB_ENV->set_errcall()
o DB->set_errcall()

This error logging enhancement does not slow performance or significantly increase application size,
and may be run during normal operation as well as during application debugging.

For DB handles opened inside of Berkeley DB environments, calling the DB->set _errfile() method
affects the entire environment and is equivalent to calling the DB_ENV->set_errfile() method.

When used on a database that was not opened in an environment, the DB- >set _errfile() method
configures operations performed using the specified DB handle, not all operations performed on the
underlying database.

The DB->set_errfile() method may be called at any time during the life of the application.

4/12/2010

DB C API Page 96

DB->set_errfile()

Parameters
errfile

The errfile parameter is a C library FI LE * to be used for displaying additional Berkeley DB error

information.
Class

DB
See Also

Database and Related Methods

4/12/2010 DB C API Page 97

DB->set_errpfx()

DB->set_errpfx()

#i ncl ude <db. h>

voi d
DB->set _errpfx(DB *db, const char *errpfx);

Set the prefix string that appears before error messages issued by Berkeley DB.

The DB->set _errpfx() and DB_ENV->set_errpfx() methods do not copy the memory to which the errpfx
parameter refers; rather, they maintain a reference to it. Although this allows applications to modify
the error message prefix at any time (without repeatedly calling the interfaces), it means the memory
must be maintained until the handle is closed.

For DB handles opened inside of Berkeley DB environments, calling the DB- >set _err pf x() method
affects the entire environment and is equivalent to calling the DB_ENV->set_errpfx() method.

The DB->set _errpfx() method configures operations performed using the specified DB handle, not all
operations performed on the underlying database.

The DB->set _errpfx() method may be called at any time during the life of the application.
Parameters

errpfx

The errpfx parameter is the application-specified error prefix for additional error messages.
Class

DB
See Also

Database and Related Methods

4/12/2010 DB C API Page 98

DB->set_feedback()

DB->set_feedback()

#i ncl ude <db. h>

int
DB- >set feedback(DB *,
void (*db_feedback fcn)(DB *dbp, int opcode, int percent));

Some operations performed by the Berkeley DB library can take non-trivial amounts of time. The

DB- >set feedback() method can be used by applications to monitor progress within these operations.
When an operation is likely to take a long time, Berkeley DB will call the specified callback function
with progress information.

It is up to the callback function to display this information in an appropriate manner.
The DB- >set _feedback() method may be called at any time during the life of the application.

The DB->set _f eedback() method returns a non-zero error value on failure and 0 on success.

|:| Berkeley DB is not re-entrant. Callback functions should not attempt to make library calls (for
example, to release locks or close open handles). Re-entering Berkeley DB is not guaranteed to
work correctly, and the results are undefined.

Parameters

db_feedback_fcn

The db_feedback_fcn parameter is the application-specified feedback function called to report Berkeley
DB operation progress. The callback function must take three parameters:

e dbp
The dbp parameter is a reference to the enclosing database.
e opcode

The opcode parameter is an operation code. The opcode parameter may take on any of the following
values:

+ DB_UPGRADE
The underlying database is being upgraded.
« DB VER FY
The underlying database is being verified.
 percent

The percent parameter is the percent of the operation that has been completed, specified as an
integer value between 0 and 100.

4/12/2010

DB C API Page 99

DB->set_feedback()

Class
DB
See Also

Database and Related Methods

4/12/2010 DB C API Page 100

DB->set_flags()

DB->set_flags()

#i ncl ude <db. h>

int
DB->set _flags(DB *db, u_int32_t flags);

Configure a database. Calling DB- >set _flags() is additive; there is no way to clear flags.
The DB->set _flags() method may not be called after the DB->open() method is called.

The DB->set _flags() method returns a non-zero error value on failure and 0 on success.

Parameters

flags

The flags parameter must be set to 0 or by bitwise inclusively OR'ing together one or more of the
following values:

General
The following flags may be specified for any Berkeley DB access method:
« DB_CHKSUM

Do checksum verification of pages read into the cache from the backing filestore. Berkeley DB uses
the SHA1 Secure Hash Algorithm if encryption is configured and a general hash algorithm if it is not.

Calling DB->set _flags() with the DB_CHKSUM flag only affects the specified DB handle (and any
other Berkeley DB handles opened within the scope of that handle).

If the database already exists when DB->open() is called, the DB_CHKSUM flag will be ignored.
« DB_ENCRYPT

Encrypt the database using the cryptographic password specified to the DB_ENV->set_encrypt() or
DB->set_encrypt() methods.

Calling DB->set _flags() with the DB_ENCRYPT flag only affects the specified DB handle (and any
other Berkeley DB handles opened within the scope of that handle).

If the database already exists when DB->open() is called, the DB_ENCRYPT flag must be the same as
the existing database or an error will be returned.

Encrypted databases are not portable between machines of different byte orders, that is, encrypted
databases created on big-endian machines cannot be read on little-endian machines, and vice versa.

« DB_TXN_NOT_DURABLE

If set, Berkeley DB will not write log records for this database. This means that updates of this
database exhibit the ACI (atomicity, consistency, and isolation) properties, but not D (durability);

4/12/2010

DB C API Page 101

DB->set_flags()

that is, database integrity will be maintained, but if the application or system fails, integrity will
not persist. The database file must be verified and/or restored from backup after a failure. In order
to ensure integrity after application shut down, the database handles must be closed without specifying
DB_NOSYNC, or all database changes must be flushed from the database environment cache using
either the DB_ENV->txn_checkpoint() or DB_ENV->memp_sync() methods. All database handles for
a single physical file must set DB_TXN_NOT_DURABLE, including database handles for different
databases in a physical file.

Calling DB->set _flags() with the DB_TXN_NOT_DURABLE flag only affects the specified DB handle
(and any other Berkeley DB handles opened within the scope of that handle).

Btree
The following flags may be specified for the Btree access method:

« DB_DUP

Permit duplicate data items in the database; that is, insertion when the key of the key/data pair
being inserted already exists in the database will be successful. The ordering of duplicates in the
database is determined by the order of insertion, unless the ordering is otherwise specified by use
of a cursor operation or a duplicate sort function.

The DB_DUPSORT flag is preferred to DB_DUP for performance reasons. The DB_DUP flag should only
be used by applications wanting to order duplicate data items manually.

Calling DB- >set _flags() with the DB_DUP flag affects the database, including all threads of control
accessing the database.

If the database already exists when DB->open() is called, the DB_DUP flag must be the same as the
existing database or an error will be returned.

It is an error to specify both DB_DUP and DB_RECNUM.
DB_DUPSORT

Permit duplicate data items in the database; that is, insertion when the key of the key/data pair
being inserted already exists in the database will be successful. The ordering of duplicates in the
database is determined by the duplicate comparison function. If the application does not specify a
comparison function using the DB->set_dup_compare() method, a default lexical comparison will be
used. It is an error to specify both DB_DUPSORT and DB_RECNUM.

Calling DB->set _flags() with the DB_DUPSORT flag affects the database, including all threads of
control accessing the database.

If the database already exists when DB->open() is called, the DB_DUPSORT flag must be the same as
the existing database or an error will be returned.

DB_RECNUM

Support retrieval from the Btree using record numbers. For more information, see the DB_SET_RECNO
flag to the DB->get() and DBcursor->get() methods.

4/12/2010

DB C API Page 102

DB->set_flags()

Logical record numbers in Btree databases are mutable in the face of record insertion or deletion.
See the DB_RENUMBER flag in the Recno access method information for further discussion.

Maintaining record counts within a Btree introduces a serious point of contention, namely the page
locations where the record counts are stored. In addition, the entire database must be locked during
both insertions and deletions, effectively single-threading the database for those operations. Specifying
DB_RECNUM can result in serious performance degradation for some applications and data sets.

It is an error to specify both DB_DUP and DB_RECNUM.

Calling DB->set _flags() with the DB_RECNUM flag affects the database, including all threads of
control accessing the database.

If the database already exists when DB->open() is called, the DB_RECNUM flag must be the same as
the existing database or an error will be returned.

DB_REVSPLI TOFF

Turn off reverse splitting in the Btree. As pages are emptied in a database, the Berkeley DB Btree
implementation attempts to coalesce empty pages into higher-level pages in order to keep the
database as small as possible and minimize search time. This can hurt performance in applications
with cyclical data demands; that is, applications where the database grows and shrinks repeatedly.
For example, because Berkeley DB does page-level locking, the maximum level of concurrency in a
database of two pages is far smaller than that in a database of 100 pages, so a database that has
shrunk to a minimal size can cause severe deadlocking when a new cycle of data insertion begins.

Calling DB- >set _fl ags() with the DB_REVSPLITOFF flag only affects the specified DB handle (and any
other Berkeley DB handles opened within the scope of that handle).

Hash
The following flags may be specified for the Hash access method:

« DB_DUP

Permit duplicate data items in the database; that is, insertion when the key of the key/data pair
being inserted already exists in the database will be successful. The ordering of duplicates in the
database is determined by the order of insertion, unless the ordering is otherwise specified by use
of a cursor operation.

The DB_DUPSORT flag is preferred to DB_DUP for performance reasons. The DB_DUP flag should only
be used by applications wanting to order duplicate data items manually.

Calling DB->set _fl ags() with the DB_DUP flag affects the database, including all threads of control
accessing the database.

If the database already exists when DB->open() is called, the DB_DUP flag must be the same as the
existing database or an error will be returned.

« DB_DUPSORT

4/12/2010

DB C API Page 103

DB->set_flags()

Permit duplicate data items in the database; that is, insertion when the key of the key/data pair
being inserted already exists in the database will be successful. The ordering of duplicates in the
database is determined by the duplicate comparison function. If the application does not specify a
comparison function using the DB->set_dup_compare() method, a default lexical comparison will be
used.

Calling DB->set _flags() with the DB_DUPSORT flag affects the database, including all threads of
control accessing the database.

If the database already exists when DB->open() is called, the DB_DUPSORT flag must be the same as
the existing database or an error will be returned.

Queue
The following flags may be specified for the Queue access method:

« DB_I NORDER

The DB_INORDER flag modifies the operation of the DB_CONSUME or DB_CONSUME_WAIT flags to
DB->get() to return key/data pairs in order. That is, they will always return the key/data item from
the head of the queue.

The default behavior of queue databases is optimized for multiple readers, and does not guarantee
that record will be retrieved in the order they are added to the queue. Specifically, if a writing
thread adds multiple records to an empty queue, reading threads may skip some of the initial records
when the next DB->get() call returns.

This flag modifies the DB->get() call to verify that the record being returned is in fact the head of
the queue. This will increase contention and reduce concurrency when there are many reading
threads.

Calling DB->set _fl ags() with the DB_INORDER flag only affects the specified DB handle (and any
other Berkeley DB handles opened within the scope of that handle).

Recno
The following flags may be specified for the Recno access method:

» DB_RENUMBER

Specifying the DB_RENUMBER flag causes the logical record numbers to be mutable, and change as
records are added to and deleted from the database.

Using the DB->put() or DBcursor->put() interfaces to create new records will cause the creation of
multiple records if the record number is more than one greater than the largest record currently in
the database. For example, creating record 28, when record 25 was previously the last record in the
database, will create records 26 and 27 as well as 28. Attempts to retrieve records that were created
in this manner will result in an error return of DB_KEYEMPTY.

If a created record is not at the end of the database, all records following the new record will be
automatically renumbered upward by one. For example, the creation of a new record numbered 8

4/12/2010

DB C API Page 104

../../programmer_reference/program_errorret.html#program_errorret.DB_KEYEMPTY

DB->set_flags()

Errors

Class

causes records numbered 8 and greater to be renumbered upward by one. If a cursor was positioned
to record number 8 or greater before the insertion, it will be shifted upward one logical record,
continuing to refer to the same record as it did before.

If a deleted record is not at the end of the database, all records following the removed record will
be automatically renumbered downward by one. For example, deleting the record numbered 8 causes
records numbered 9 and greater to be renumbered downward by one. If a cursor was positioned to
record number 9 or greater before the removal, it will be shifted downward one logical record,
continuing to refer to the same record as it did before.

If a record is deleted, all cursors that were positioned on that record prior to the removal will no
longer be positioned on a valid entry. This includes cursors used to delete an item. For example, if
a cursor was positioned to record number 8 before the removal of that record, subsequent calls to
DBcursor->get() with flags of DB_CURRENT will result in an error return of DB_KEYEMPTY until the
cursor is moved to another record. A call to DBcursor->get() with flags of DB_NEXT will return the
new record numbered 8 - which is the record that was numbered 9 prior to the delete (if such a
record existed).

For these reasons, concurrent access to a Recno database with the DB_RENUMBER flag specified may
be largely meaningless, although it is supported.

Calling DB->set _flags() with the DB_RENUMBER flag affects the database, including all threads of
control accessing the database.

If the database already exists when DB->open() is called, the DB_RENUMBER flag must be the same
as the existing database or an error will be returned.

« DB_SNAPSHOT

This flag specifies that any specified re_source file be read in its entirety when DB->open() is called.
If this flag is not specified, the re_source file may be read lazily.

See the DB->set_re_source() method for information on the re_source file.

Calling DB->set _flags() with the DB_SNAPSHOT flag only affects the specified DB handle (and any
other Berkeley DB handles opened within the scope of that handle).

The DB->set _flags() method may fail and return one of the following non-zero errors:
EINVAL

An invalid flag value or parameter was specified.

DB

4/12/2010

DB C API Page 105

../../programmer_reference/program_errorret.html#program_errorret.DB_KEYEMPTY

DB->set_flags()

See Also

Database and Related Methods

4/12/2010 DB C API Page 106

DB->set_h_compare()

DB->set_h_compare()

#i ncl ude <db. h>

int
DB- >set _h_conpare(DB *db,
int (*conpare_fcn)(DB *db, const DBT *dbt1, const DBT *dbt2));

Set the Hash key comparison function. The comparison function is called whenever it is necessary to
compare a key specified by the application with a key currently stored in the database.

If no comparison function is specified, a byte-by-byte comparison is performed.

The DB->set _h_conpare() method configures operations performed using the specified DB handle, not
all operations performed on the underlying database.

The DB->set _h_conpare() method may not be called after the DB->open() method is called. If the
database already exists when DB->open() is called, the information specified to DB- >set _h_conpare()
must be the same as that historically used to create the database or corruption can occur.

The DB->set _h_conpare() method returns a non-zero error value on failure and 0 on success.

Parameters

Errors

compare_fcn

The compare_fcn function is the application-specified Hash comparison function. The comparison
function takes three parameters:

e db

The db parameter is the enclosing database handle.
o dbtl

The dbt1 parameter is the DBT representing the application supplied key.
o dbt2

The dbt2 parameter is the DBT representing the current database's key.

The compare_fcn function must return an integer value less than, equal to, or greater than zero if
the first key parameter is considered to be respectively less than, equal to, or greater than the second
key parameter. The comparison function must correctly handle any key values used by the application
(possibly including zero-length keys). The data and size fields of the DBT are the only fields that may
be used for the purposes of this comparison, and no particular alignment of the memory to which by
the data field refers may be assumed.

The DB->set _h_conpare() method may fail and return one of the following non-zero errors:

4/12/2010

DB C API Page 107

DB->set_h_compare()

EINVAL
If the method was called after DB->open() was called; or if an invalid flag value or parameter was
specified.
Class
DB
See Also

Database and Related Methods

4/12/2010 DB C API Page 108

DB->set_h_ffactor()

DB->set__h_ffactor()

#i ncl ude <db. h>

i nt
DB->set _h_ffactor(DB *db, u_int32_t h_ffactor);

Set the desired density within the hash table. If no value is specified, the fill factor will be selected
dynamically as pages are filled.

The density is an approximation of the number of keys allowed to accumulate in any one bucket,
determining when the hash table grows or shrinks. If you know the average sizes of the keys and data
in your data set, setting the fill factor can enhance performance. A reasonable rule computing fill
factor is to set it to the following:

(pagesize - 32) | (average key size + average data_size + 8)

The DB->set _h _ffactor() method configures a database, not only operations performed using the
specified DB handle.

The DB->set _h_ffactor() method may not be called after the DB->open() method is called. If the
database already exists when DB->open() is called, the information specified to DB- >set _h_ffactor()
will be ignored.

The DB->set _h_ffactor() method returns a non-zero error value on failure and 0 on success.
Parameters

h_ffactor

The h_ffactor parameter is the desired density within the hash table.
Errors

The DB->set _h_ffactor() method may fail and return one of the following non-zero errors:

EINVAL
If the method was called after DB->open() was called; or if an invalid flag value or parameter was
specified.
Class
DB
See Also

Database and Related Methods

4/12/2010 DB C API Page 109

DB->set_h_hash()

DB->set_h_hash()

#i ncl ude <db. h>

int

DB- >set _h_hash(DB *db,
u_int32_t (*h_hash_fcn) (DB *dbp, const void *bytes,
u_int32_t length));

Set a user-defined hash function; if no hash function is specified, a default hash function is used.
Because no hash function performs equally well on all possible data, the user may find that the built-in
hash function performs poorly with a particular data set.

The DB- >set _h_hash() method configures operations performed using the specified DB handle, not all
operations performed on the underlying database.

The DB->set _h_hash() method may not be called after the DB->open() method is called. If the database
already exists when DB->open() is called, the information specified to DB- >set _h_hash() must be the
same as that historically used to create the database or corruption can occur.

The DB->set _h_hash() method returns a non-zero error value on failure and 0 on success.

Parameters

Errors

Class

h_hash_fcn
The h_hash_fcn parameter is the application-specified hash function.

Application-specified hash functions take a pointer to a byte string and a length as parameters, and
return a value of type u_int32_t. The hash function must handle any key values used by the application
(possibly including zero-length keys).

The DB->set _h_hash() method may fail and return one of the following non-zero errors:
EINVAL

If the method was called after DB->open() was called; or if an invalid flag value or parameter was
specified.

DB

See Also

Database and Related Methods

4/12/2010

DB C API Page 110

DB->set_h_nelem()

DB->set_h_nelem()
#i nclude <db. h>

i nt
DB->set _h_nel em(DB *db, u_int32_t h_nelem;

Set an estimate of the final size of the hash table.

In order for the estimate to be used when creating the database, the DB->set_h_ffactor() method must
also be called. If the estimate or fill factor are not set or are set too low, hash tables will still expand
gracefully as keys are entered, although a slight performance degradation may be noticed.

The DB- >set _h_nel en{) method configures a database, not only operations performed using the specified
DB handle.

The DB- >set _h_nel en{) method may not be called after the DB->open() method is called. If the database
already exists when DB->open() is called, the information specified to DB- >set _h_nel en() will be
ignored.

The DB->set _h_nel en{) method returns a non-zero error value on failure and 0 on success.
Parameters

h_nelem

The h_nelem parameter is an estimate of the final size of the hash table.
Errors

The DB->set _h_nel en{) method may fail and return one of the following non-zero errors:

EINVAL
If the method was called after DB->open() was called; or if an invalid flag value or parameter was
specified.
Class
DB
See Also

Database and Related Methods

4/12/2010 DB C API Page 111

DB->set_lorder()

DB->set_lorder()

#i ncl ude <db. h>

int
DB->set | order (DB *db, int |order);

Set the byte order for integers in the stored database metadata. The host byte order of the machine
where the Berkeley DB library was compiled will be used if no byte order is set.

The access methods provide no guarantees about the byte ordering of the application data stored
in the database, and applications are responsible for maintaining any necessary ordering.

The DB->set | order () method configures a database, not only operations performed using the specified
DB handle.

The DB->set _| order () method may not be called after the DB->open() method is called. If the database
already exists when DB->open() is called, the information specified to DB- >set | or der () will be ignored.

If creating additional databases in a single physical file, information specified to DB- >set | order () will
be ignored and the byte order of the existing databases will be used.

The DB->set _| order () method returns a non-zero error value on failure and 0 on success.

Parameters

Errors

Class

lorder

The lorder parameter should represent the byte order as an integer; for example, big endian order is
the number 4,321, and little endian order is the number 1,234.

The DB- >set | order () method may fail and return one of the following non-zero errors:
EINVAL

If the method was called after DB->open() was called; or if an invalid flag value or parameter was
specified.

DB

See Also

Database and Related Methods

4/12/2010

DB C API Page 112

DB->set_msgcall()

DB->set_msgcall()

#i ncl ude <db. h>

voi d
DB- >set _nmsgcal | (DB *,
void (*db_nsgcal | _fcn)(const DB_ENV *dbenv, char *nsg));

There are interfaces in the Berkeley DB library which either directly output informational messages or
statistical information, or configure the library to output such messages when performing other
operations, for example, DB_ENV->set_verbose() and DB_ENV->stat_print().

The DB_ENV->set_msgcall() and DB->set _nsgcal | () methods are used to pass these messages to the
application, and Berkeley DB will call db_msgcall_fcn with each message. It is up to the db_msgcall_fcn
function to display the message in an appropriate manner.

Setting db_msgcall_fcn to NULL unconfigures the callback interface.

Alternatively, you can use the DB->set_msgfile() or DB->set_msgfile() methods to display the messages
via a C library FILE *.

For DB handles opened inside of Berkeley DB environments, calling the DB->set _nsgcal | () method
affects the entire environment and is equivalent to calling the DB_ENV- >set _msgcal | () method.

The DB- >set _nsgcal | () method configures operations performed using the specified DB handle, not
all operations performed on the underlying database.

The DB->set _msgcal | () method may be called at any time during the life of the application.

|:| Berkeley DB is not re-entrant. Callback functions should not attempt to make library calls (for
example, to release locks or close open handles). Re-entering Berkeley DB is not guaranteed to
work correctly, and the results are undefined.

Parameters

Class

db_msgcall_fcn

The db_msgcall_fcn parameter is the application-specified message reporting function. The function
takes two parameters:

« dbenv
The dbenv parameter is the enclosing database environment.
. n’Bg

The msg parameter is the message string.

DB

4/12/2010

DB C API Page 113

DB->set_msgcall()

See Also

Database and Related Methods

4/12/2010 DB C API Page 114

DB->set_msgfile()

DB->set_msgfile()

#i ncl ude <db. h>

voi d
DB->set _msgfile(DB *db, FILE *nsgfile);

There are interfaces in the Berkeley DB library which either directly output informational messages or
statistical information, or configure the library to output such messages when performing other
operations, for example, DB_ENV->set_verbose() and DB_ENV->stat_print().

The DB_ENV->set_msgfile() and DB- >set _nsgfil e() methods are used to display these messages for the
application. In this case the message will include a trailing <newline> character.

Setting msgfile to NULL unconfigures the interface.

Alternatively, you can use the DB_ENV->set_msgcall() or DB->set_msgcall() methods to capture the
additional error information in a way that does not use C library FILE *'s.

For DB handles opened inside of Berkeley DB environments, calling the DB->set _nsgfil e() method
affects the entire environment and is equivalent to calling the DB_ENV->set_msgfile() method.

The DB->set _msgfil e() method configures operations performed using the specified DB handle, not
all operations performed on the underlying database.

The DB->set_msgfil e() method may be called at any time during the life of the application.

Parameters

Class

msgdgfile

The msgfile parameter is a C library FILE * to be used for displaying messages.

DB

See Also

Database and Related Methods

4/12/2010

DB C API Page 115

DB->set_pagesize()

DB->set_pagesize()
#i ncl ude <db. h>

int
DB- >set _pagesi ze(DB *db, u_int32_t pagesize);

Set the size of the pages used to hold items in the database, in bytes. The minimum page size is 512
bytes, the maximum page size is 64K bytes, and the page size must be a power-of-two. If the page size
is not explicitly set, one is selected based on the underlying filesystem I/0 block size. The automatically
selected size has a lower limit of 512 bytes and an upper limit of 16K bytes.

For information on tuning the Berkeley DB page size, see Selecting a page size.

The DB- >set _pagesi ze() method configures a database, not only operations performed using the
specified DB handle.

The DB- >set _pagesi ze() method may not be called after the DB->open() method is called. If the
database already exists when DB->open() is called, the information specified to DB- >set _pagesi ze()
will be ignored.

If creating additional databases in a single physical file, information specified to DB- >set _pagesi ze()
will be ignored and the page size of the existing databases will be used.

The DB- >set _pagesi ze() method returns a non-zero error value on failure and 0 on success.
The DB- >set _pagesi ze() method returns a non-zero error value on failure and 0 on success.
Parameters
pagesize
The pagesize parameter sets the database page size.
Errors

The DB- >set _pagesi ze() method may fail and return one of the following non-zero errors:

EINVAL
If the method was called after DB->open() was called; or if an invalid flag value or parameter was
specified.
Class
DB
See Also

Database and Related Methods

4/12/2010 DB C API Page 116

../../programmer_reference/general_am_conf.html#am_conf_pagesize

DB->set_partition()

DB->set_partition()

#i ncl ude <db. h>

int
DB->set partition(DB * db, u_int32_t parts, DBT *keys,
u_int32_t (*db_partition_fcn) (DB *db, DBT *key));

Set up partitioning for a database. Partitioning may be used on either BTREE or HASH databases.
Partitions may be specified by either a set of keys specifying a range of values in each partition or with
a callback function that returns the number of the partition to put a specific key. Partition range keys
may only be specified for BTREE databases.

Partitions are implimented as separate database files and can help reduce contention within a logical
database. Contention can come from multiple threads of control accessing database pages simultaniously.
Typically these pages are the root of a btree and the metadata page which contains allocation

information in both BTREE and HASH databases. Each partition has its own metadata and root pages.

Parameters

Class

Exactly one of the parameters keys and partition_fcn must be NULL.

parts

The parts parameter is the number of partitions to create. The value must be 2 or greater.
keys

The keys parameter is an array of DBT structures containing the keys that specify the range of key
values to be stored in each partition. Each key specifies the minimum value that may be stored in the
corresponding partition. The number of keys must be one less than the number of partitions specified
by the parts parameter since the first partition will hold any key less than the first key in the array.

db_ partition_fcn

The db_partition_fcn parameter is the application-specified partitioning function. The function returns
an integer which will be used modulo the number of partitions specified by the parts parameter. The
function will be called with two parameters:

o db
The db parameter is the database handle.
o key

The key parameter is the key for which a partition number should be returned.

DB

4/12/2010

DB C API Page 117

DB->set_partition()

See Also

Database and Related Methods

4/12/2010 DB C API Page 118

DB->set_partition_dirs()

DB->set_partition_dirs()

#i ncl ude <db. h>

int
DB->set partition_dirs(DB *db, const char **dirs);

Specify which directories the database extents should be created in or looked for. If the number of
directories is less than the number of partitions, the directories will be used in a round robin fashion.

The DB->set _partition_dirs() method may not be called after the DB->open() method is called.

The DB->set _partition_dirs() method returns a non-zero error value on failure and 0 on success.

Parameters

Errors

Class

dirs

The dirs points to an array of directories that will be used to create or locate the database extent files
specified in the DB->open() method call. The directories must be included in the environment list
specified by DB_ENV->add_data_dir().

The DB->set _partition_dirs() method may fail and return one of the following non-zero errors:
EINVAL

An invalid flag value or parameter was specified.

DB

See Also

Database and Related Methods

4/12/2010

DB C API Page 119

DB->set_priority()

DB->set_priority()
#i nclude <db. h>

i nt

DB->set priority(DB *db, DB _CACHE PRICRITY priority);
Set the cache priority for pages referenced by the DB handle.
The priority of a page biases the replacement algorithm to be more or less likely to discard a page
when space is needed in the buffer pool. The bias is temporary, and pages will eventually be discarded

if they are not referenced again. The DB->set _priority() method is only advisory, and does not
guarantee pages will be treated in a specific way.

The DB->set _priority() method may be called at any time during the life of the application.

The DB->set_priority() method returns a non-zero error value on failure and 0 on success.
Parameters

priority

The priority parameter must be set to one of the following values:

« DB_PRI ORI TY_VERY_LOW

The lowest priority: pages are the most likely to be discarded.
« DB PRICRI TY_LOW

The next lowest priority.

DB PRI ORI TY_DEFAULT
The default priority.
« DB PRIORI TY H GH

The next highest priority.

DB_PRI ORI TY_VERY_H GH
The highest priority: pages are the least likely to be discarded.
Class
DB
See Also

Database and Related Methods

4/12/2010 DB C API Page 120

DB->set_q_extentsize()

DB->set_(q_extentsize()

#i nclude <db. h>
i nt
DB->set _q_extentsize(DB *db, u_int32_t extentsize);

Set the size of the extents used to hold pages in a Queue database, specified as a number of pages.
Each extent is created as a separate physical file. If no extent size is set, the default behavior is to
create only a single underlying database file.

For information on tuning the extent size, see Selecting a extent size.

The DB->set _q_ext ent si ze() method configures a database, not only operations performed using the
specified DB handle.

The DB->set _q_ext ent si ze() method may not be called after the DB->open() method is called. If the
database already exists when DB->open() is called, the information specified to DB- >set _g_ext ent si ze()
will be ignored.

The DB- >set _q_extentsi ze() method returns a non-zero error value on failure and 0 on success.

Parameters

Errors

Class

extentsize

The extentsize parameter is the number of pages in a Queue database extent.

The DB- >set _q_extentsi ze() method may fail and return one of the following non-zero errors:
EINVAL

If the method was called after DB->open() was called; or if an invalid flag value or parameter was
specified.

DB

See Also

Database and Related Methods

4/12/2010

DB C API Page 121

../../programmer_reference/rq_conf.html#am_conf_extentsize

DB->set_re_delim()

DB->set_re_delim()

#i ncl ude <db. h>

int
DB->set _re_delin(DB *db, int delim;

Set the delimiting byte used to mark the end of a record in the backing source file for the Recno access
method.

This byte is used for variable length records if the re_source file is specified using the
DB->set_re_source() method. If the re_source file is specified and no delimiting byte was specified,
<newline> characters (that is, ASCII Ox0a) are interpreted as end-of-record markers.

The DB->set _re_del i m() method configures a database, not only operations performed using the
specified DB handle.

The DB->set _re_del i m() method may not be called after the DB->open() method is called. If the
database already exists when DB->open() is called, the information specified to DB- >set _re_del i n()
will be ignored.

The DB->set _re_del i m{) method returns a non-zero error value on failure and 0 on success.

Parameters

Errors

Class

re_delim

The re_delim parameter is the delimiting byte used to mark the end of a record.

The DB->set _re_del i m) method may fail and return one of the following non-zero errors:
EINVAL

If the method was called after DB->open() was called; or if an invalid flag value or parameter was
specified.

DB

See Also

Database and Related Methods

4/12/2010

DB C API Page 122

DB->set_re_len()

DB->set_re_len()
#i nclude <db. h>
i nt
DB->set re_|en(DB *db, u_int32_t re_len);

For the Queue access method, specify that the records are of length re_len. For the Queue access
method, the record length must be enough smaller than the database's page size that at least one
record plus the database page's metadata information can fit on each database page.

For the Recno access method, specify that the records are fixed-length, not byte-delimited, and are
of length re_len.

Any records added to the database that are less than re_len bytes long are automatically padded (see
DB->set_re_pad() for more information).

Any attempt to insert records into the database that are greater than re_len bytes long will cause the
call to fail immediately and return an error.

The DB->set _re_| en() method configures a database, not only operations performed using the specified
DB handle.

The DB->set _re_| en() method may not be called after the DB->open() method is called. If the database
already exists when DB->open() is called, the information specified to DB->set _re_| en() will be ignored.

The DB->set _re_| en() method returns a non-zero error value on failure and 0 on success.
Parameters

re_len

The re_len parameter is the length of a Queue or Recno database record, in bytes.
Errors

The DB->set _re_| en() method may fail and return one of the following non-zero errors:

EINVAL
If the method was called after DB->open() was called; or if an invalid flag value or parameter was
specified.
Class
DB
See Also

Database and Related Methods

4/12/2010 DB C API Page 123

DB->set_re_pad()

DB->set_re_pad()

#i ncl ude <db. h>

int
DB->set _re_pad(DB *db, int re_pad);

Set the padding character for short, fixed-length records for the Queue and Recno access methods.
If no pad character is specified, <space> characters (that is, ASCII 0x20) are used for padding.

The DB->set _re_pad() method configures a database, not only operations performed using the specified
DB handle.

The DB->set _re_pad() method may not be called after the DB->open() method is called. If the database
already exists when DB->open() is called, the information specified to DB- >set _re_pad() will be ignored.

The DB->set _re_pad() method returns a non-zero error value on failure and 0 on success.

Parameters

Errors

Class

re_pad

The re_pad parameter is the pad character for fixed-length records for the Queue and Recno access
methods.

The DB->set _re_pad() method may fail and return one of the following non-zero errors:
EINVAL

If the method was called after DB->open() was called; or if an invalid flag value or parameter was
specified.

DB

See Also

Database and Related Methods

4/12/2010

DB C API Page 124

DB->set_re_source()

DB->set_re_source()

#i ncl ude <db. h>

int
DB->set _re_source(DB *db, char *source);

Set the underlying source file for the Recno access method. The purpose of the source value is to
provide fast access and modification to databases that are normally stored as flat text files.

The source parameter specifies an underlying flat text database file that is read to initialize a transient
record number index. In the case of variable length records, the records are separated, as specified
by DB->set_re_delim(). For example, standard UNIX byte stream files can be interpreted as a sequence
of variable length records separated by <newline> characters.

In addition, when cached data would normally be written back to the underlying database file (for
example, the DB->close() or DB->sync() methods are called), the in-memory copy of the database will
be written back to the source file.

By default, the backing source file is read lazily; that is, records are not read from the file until they
are requested by the application. If multiple processes (not threads) are accessing a Recno database
concurrently, and are either inserting or deleting records, the backing source file must be read in
its entirety before more than a single process accesses the database, and only that process should
specify the backing source file as part of the DB->open() call. See the DB_SNAPSHOT flag for more
information.

Reading and writing the backing source file specified by source cannot be transaction-protected
because it involves filesystem operations that are not part of the Db transaction methodology. For
this reason, if a temporary database is used to hold the records, it is possible to lose the contents of
the source file, for example, if the system crashes at the right instant. If a file is used to hold the
database, normal database recovery on that file can be used to prevent information loss, although it
is still possible that the contents of source will be lost if the system crashes.

The source file must already exist (but may be zero-length) when DB->open() is called.

It is not an error to specify a read-only source file when creating a database, nor is it an error to modify
the resulting database. However, any attempt to write the changes to the backing source file using
either the DB->sync() or DB->close() methods will fail, of course. Specify the DB_NOSYNC flag to the
DB->close() method to stop it from attempting to write the changes to the backing file; instead, they
will be silently discarded.

For all of the previous reasons, the source field is generally used to specify databases that are read-only
for Berkeley DB applications; and that are either generated on the fly by software tools or modified
using a different mechanism — for example, a text editor.

The DB->set _re_source() method configures operations performed using the specified DB handle, not
all operations performed on the underlying database.

4/12/2010

DB C API Page 125

DB->set_re_source()

The DB->set _re_source() method may not be called after the DB->open() method is called. If the
database already exists when DB->open() is called, the information specified to DB- >set _re_source()
must be the same as that historically used to create the database or corruption can occur.

The DB->set _re_source() method returns a non-zero error value on failure and 0 on success.

Parameters

Errors

Class

source
The backing flat text database file for a Recno database.

When using a Unicode build on Windows (the default), the source argument will be interpreted as a
UTF-8 string, which is equivalent to ASCII for Latin characters.

The DB->set _re_source() method may fail and return one of the following non-zero errors:
EINVAL

If the method was called after DB->open() was called; or if an invalid flag value or parameter was
specified.

DB

See Also

Database and Related Methods

4/12/2010

DB C API Page 126

DB->stat()

DB->stat()

#incl ude <db. h>
int
DB->stat (DB *db, DB TXN *txnid, void *sp, u_int32_t flags);

The DB- >st at () method creates a statistical structure and copies a pointer to it into user-specified
memory locations. Specifically, if sp is non-NULL, a pointer to the statistics for the database are copied
into the memory location to which it refers.

The DB- >st at () method returns a non-zero error value on failure and 0 on success.

Parameters
flags
The flags parameter must be set to 0 or one of the following values:
o DB FAST_STAT

Return only the values which do not require traversal of the database. Among other things, this flag
makes it possible for applications to request key and record counts without incurring the performance
penalty of traversing the entire database.

« DB_READ_COWM TTED

Database items read during a transactional call will have degree 2 isolation. This ensures the stability
of the data items read during the stat operation but permits that data to be modified or deleted by
other transactions prior to the commit of the specified transaction.

« DB_READ_UNCOMM TTED

Database items read during a transactional call will have degree 1 isolation, including modified but
not yet committed data. Silently ignored if the DB_READ_UNCOMMITTED flag was not specified when
the underlying database was opened.

txnid

If the operation is part of an application-specified transaction, the txnid parameter is a transaction
handle returned from DB_ENV->txn_begin(); if the operation is part of a Berkeley DB Concurrent Data
Store group, the txnid parameter is a handle returned from DB_ENV->cdsgroup_begin(); otherwise
NULL. If no transaction handle is specified, but the operation occurs in a transactional database, the
operation will be implicitly transaction protected.

Statistical Structure

Statistical structures are stored in allocated memory. If application-specific allocation routines have
been declared (see DB_ENV->set_alloc() for more information), they are used to allocate the memory;
otherwise, the standard C library malloc(3) is used. The caller is responsible for deallocating the

4/12/2010 DB C API Page 127

DB->stat()

memory. To deallocate the memory, free the memory reference; references inside the returned memory
need not be individually freed.

If the DB_FAST_STAT flag has not been specified, the DB- >st at () method will access some of or all the
pages in the database, incurring a severe performance penalty as well as possibly flushing the underlying
buffer pool.

In the presence of multiple threads or processes accessing an active database, the information returned
by DB->stat may be out-of-date.

If the database was not opened read-only and the DB_FAST_STAT flag was not specified, the cached
key and record numbers will be updated after the statistical information has been gathered.

The DB- >st at () method may not be called before the DB->open() method is called.
The DB- >st at () method returns a non-zero error value on failure and 0 on success.
Hash Statistics

In the case of a Hash database, the statistics are stored in a structure of type DB _HASH STAT. The
following fields will be filled in:

e u_int32_ t hash_magic;

Magic number that identifies the file as a Hash file. Returned if DB_FAST_STAT is set.
e U_int32_t hash_version;

The version of the Hash database. Returned if DB_FAST_STAT is set.
e u_int32_ t hash_nkeys;

The number of unique keys in the database. If DB_FAST_STAT was specified the count will be the
last saved value unless it has never been calculated, in which case it will be 0. Returned if
DB_FAST_STAT is set.

e u_int32_t hash_ndata;

The number of key/data pairs in the database. If DB_FAST_STAT was specified the count will be the
last saved value unless it has never been calculated, in which case it will be 0. Returned if
DB_FAST_STAT is set.

e U_int32_t hash_pagecnt;
The number of pages in the database. Returned if DB_FAST_STAT is set.
e u_int32_t hash_pagesi ze;
The underlying database page (and bucket) size, in bytes. Returned if DB_FAST_STAT is set.

e U_int32_t hash ffactor;

4/12/2010

DB C API Page 128

DB->stat()

The desired fill factor (number of items per bucket) specified at database-creation time. Returned
if DB_FAST_STAT is set.

e u_int32_t hash_buckets;

The number of hash buckets. Returned if DB_FAST_STAT is set.
e u_int32_t hash free;

The number of pages on the free list.
e uintmax_t hash_bfree;

The number of bytes free on bucket pages.
e u_int32_t hash_bigpages;

The number of big key/data pages.
e uintmax_t hash_big_bfree;

The number of bytes free on big item pages.
e u_int32_t hash_overfl ows;

The number of overflow pages (overflow pages are pages that contain items that did not fit in the
main bucket page).

e uintmax_t hash_ovfl free;

The number of bytes free on overflow pages.
e u_int32_t hash_dup;

The number of duplicate pages.
e uintmax_t hash_dup_free;

The number of bytes free on duplicate pages.
Btree and Recno Statistics

In the case of a Btree or Recno database, the statistics are stored in a structure of type DB_BTREE STAT.
The following fields will be filled in:

e U_int32_t bt_magic;
Magic number that identifies the file as a Btree database. Returned if DB_FAST_STAT is set.
e uU_int32_t bt _version;

The version of the Btree database. Returned if DB_FAST_STAT is set.

4/12/2010 DB C API Page 129

DB->stat()

e u_int32_t bt_nkeys;

For the Btree Access Method, the number of keys in the database. If the DB_FAST_STAT flag is not
specified or the database was configured to support record numbers (see DB_RECNUM), the count
will be exact. Otherwise, the count will be the last saved value unless it has never been calculated,
in which case it will be 0.

For the Recno Access Method, the number of records in the database. If the database was configured
with mutable record numbers (see DB_RENUMBER), the count will be exact. Otherwise, if the
DB_FAST_STAT flag is specified the count will be exact but will include deleted and implicitly created
records; if the DB_FAST_STAT flag is not specified, the count will be exact and will not include
deleted or implicitly created records.

Returned if DB_FAST_STAT is set.
u_int32_t bt ndata;

For the Btree Access Method, the number of key/data pairs in the database. If the DB_FAST_STAT
flag is not specified, the count will be exact. Otherwise, the count will be the last saved value unless
it has never been calculated, in which case it will be 0.

For the Recno Access Method, the number of records in the database. If the database was configured
with mutable record numbers (see DB_RENUMBER), the count will be exact. Otherwise, if the
DB_FAST_STAT flag is specified the count will be exact but will include deleted and implicitly created
records; if the DB_FAST_STAT flag is not specified, the count will be exact and will not include
deleted or implicitly created records.

Returned if DB_FAST_STAT is set.

u_int32_t bt _pagecnt;

The number of pages in the database. Returned if DB_FAST_STAT is set.
u_int32_t bt _pagesize;

The underlying database page size, in bytes. Returned if DB_FAST_STAT is set.
u_int32_t bt _ninkey;

The minimum keys per page. Returned if DB_FAST_STAT is set.

uint32_t bt re len;

The length of fixed-length records. Returned if DB_FAST_STAT is set.
u_int32_t bt re_pad,

The padding byte value for fixed-length records. Returned if DB_FAST_STAT is set.
u_int32_t bt _levels;

Number of levels in the database.

4/12/2010

DB C API Page 130

DB->stat()

u_int32_t bt_int_pg;

Number of database internal pages.
u_int32_t bt _|eaf pg;

Number of database leaf pages.

u_int32_t bt_dup_pg;

Number of database duplicate pages.

u_int32_t bt_over_pg;

Number of database overflow pages.
u_int32_t bt_enpty pg;

Number of empty database pages.
u_int32t bt free;

Number of pages on the free list.

uintmax_t bt _int_pgfree;

Number of bytes free in database internal pages.

uintmax_t bt _leaf pgfree;

Number of bytes free in database leaf pages.

uintmax_t bt _dup_pgfree;

Number of bytes free in database duplicate pages.

uintmax_t bt _over pgfree;

Number of bytes free in database overflow pages.

Queue Statistics

In the case of a Queue database, the statistics are stored in a structure of type DB_QUEUE STAT. The
following fields will be filled in:

u_int32_t qs_magic;

Magic number that identifies the file as a Queue file. Returned if DB_FAST_STAT is set.

u_int32_t qgs_version;

The version of the Queue file type. Returned if DB_FAST_STAT is set.

4/12/2010

DB C API

Page 131

DB->stat()

Errors

u_int32_t qs_nkeys;

The number of records in the database. If DB_FAST_STAT was specified the count will be the last
saved value unless it has never been calculated, in which case it will be 0. Returned if DB_FAST_STAT
is set.

u_int32_t gs_ndata;

The number of records in the database. If DB_FAST_STAT was specified the count will be the last
saved value unless it has never been calculated, in which case it will be 0. Returned if DB_FAST_STAT
is set.

u_int32_t qs_pagesize;

Underlying database page size, in bytes. Returned if DB_FAST_STAT is set.
u_int32_t qgs_extentsize;

Underlying database extent size, in pages. Returned if DB_FAST_STAT is set.
u_int32_t gs_pages;

Number of pages in the database.

u_int32_t qgs_re_len;

The length of the records. Returned if DB_FAST_STAT is set.

u_int32_t gs_re_pad;

The padding byte value for the records. Returned if DB_FAST_STAT is set.
u_int32_t qs_pgfree;

Number of bytes free in database pages.

u_int32_t gs_first_recno;

First undeleted record in the database. Returned if DB_FAST_STAT is set.
u_int32_t gs_cur_recno;

Next available record number. Returned if DB_FAST_STAT is set.

The DB- >st at () method may fail and return one of the following non-zero errors:

DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions to be rolled back.
This invalidates all the database and cursor handles opened in the replication environment. Once this

4/12/2010

DB C API Page 132

DB->stat()

occurs, an attempt to use such a handle will return DB_REP_HANDLE DEAD. The application will need to
discard the handle and open a new one in order to continue processing.

DB_REP_LOCKOUT

The operation was blocked by client/master synchronization.

EINVAL

An invalid flag value or parameter was specified.
Class

DB
See Also

Database and Related Methods

4/12/2010 DB C API Page 133

DB->stat_print()

DB->stat_print()

#i ncl ude <db. h>

int

DB->stat_print(DB *db, u_int32_t flags);
The DB->stat _print() method displays the database statistical information, as described for the
DB- >st at () method. The information is printed to a specified output channel (see the

DB_ENV->set_msgfile() method for more information), or passed to an application callback function
(see the DB_ENV->set_msgcall() method for more information).

The DB->stat_print() method may not be called before the DB->open() method is called.

The DB->stat_print() method returns a non-zero error value on failure and 0 on success.

Parameters

Class

flags

The flags parameter must be set to 0 or by bitwise inclusively OR'ing together one or more of the
following values:

« DB_FAST_STAT

Return only the values which do not require traversal of the database. Among other things, this flag
makes it possible for applications to request key and record counts without incurring the performance
penalty of traversing the entire database.

« DB _STAT ALL

Display all available information.

DB

See Also

Database and Related Methods

4/12/2010

DB C API Page 134

DB->sync()

DB->sync()

#i ncl ude <db. h>

int
DB->sync(DB *db, u_int32_t flags);

The DB- >sync() method flushes any cached information to disk.
If the database is in memory only, the DB- >sync() method has no effect and will always succeed.

It is important to understand that flushing cached information to disk only minimizes the window
of opportunity for corrupted data. Although unlikely, it is possible for database corruption to happen
if a system or application crash occurs while writing data to the database. To ensure that database
corruption never occurs, applications must either: use transactions and logging with automatic recovery;
use logging and application-specific recovery; or edit a copy of the database, and once all applications
using the database have successfully called DB->close(), atomically replace the original database with
the updated copy.

The DB->sync() method returns a non-zero error value on failure and 0 on success.

Parameters

Errors

Class

flags

The flags parameter is currently unused, and must be set to 0.

The DB- >sync() method may fail and return one of the following non-zero errors:
DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions to be rolled back.
This invalidates all the database and cursor handles opened in the replication environment. Once this
occurs, an attempt to use such a handle will return DB_REP_HANDLE DEAD. The application will need to
discard the handle and open a new one in order to continue processing.

DB_REP_LOCKOUT
The operation was blocked by client/master synchronization.
EINVAL

An invalid flag value or parameter was specified.

DB

4/12/2010

DB C API Page 135

DB->sync()

See Also

Database and Related Methods

4/12/2010 DB C API Page 136

DB->truncate()

DB->truncate()

#i ncl ude <db. h>

i nt
DB- >t runcat e(DB *db,
DB TXN *txnid, u_int32_t *countp, u_int32_t flags);

The DB- >t runcat e() method empties the database, discarding all records it contains. The number of
records discarded from the database is returned in countp.

When called on a database configured with secondary indices using the DB->associate() method, the
DB- >t runcat e() method truncates the primary database and all secondary indices. A count of the
records discarded from the primary database is returned.

It is an error to call the DB- >t runcat e() method on a database with open cursors.

The DB- >t runcat e() method returns a non-zero error value on failure and 0 on success.

Parameters

Errors

countp

The countp parameter references memory into which the number of records discarded from the
database is copied.

flags
The flags parameter is currently unused, and must be set to 0.
txnid

If the operation is part of an application-specified transaction, the txnid parameter is a transaction
handle returned from DB_ENV->txn_begin(); if the operation is part of a Berkeley DB Concurrent Data
Store group, the txnid parameter is a handle returned from DB_ENV->cdsgroup_begin(); otherwise
NULL. If no transaction handle is specified, but the operation occurs in a transactional database, the
operation will be implicitly transaction protected.

The DB- >t runcat e() method may fail and return one of the following non-zero errors:
DB_LOCK_DEADLOCK

A transactional database environment operation was selected to resolve a deadlock.
DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was unable
to grant a lock in the allowed time.

4/12/2010

DB C API Page 137

DB->truncate()

EINVAL

If there are open cursors in the database; or if an invalid flag value or parameter was specified.
Class

DB
See Also

Database and Related Methods

4/12/2010 DB C API Page 138

DB->upgrade()

DB->upgrade()

#incl ude <db. h>
int
DB- >upgrade(DB *db, const char *file, u_int32_t flags);

The DB- >upgr ade() method upgrades all of the databases included in the file file, if necessary. If no
upgrade is necessary, DB- >upgrade() always returns success.

Database upgrades are done in place and are destructive. For example, if pages need to be allocated
and no disk space is available, the database may be left corrupted. Backups should be made before
databases are upgraded. See Upgrading databases for more information.

Unlike all other database operations, DB- >upgrade() may only be done on a system with the same
byte-order as the database.

The DB- >upgr ade() method returns a non-zero error value on failure and 0 on success.

The DB- >upgr ade() method is the underlying method used by the db_upgrade utility. See the db_upgrade
utility source code for an example of using DB- >upgr ade() in a IEEE/ANSI Std 1003.1 (POSIX) environment.

Parameters

file

The file parameter is the physical file containing the databases to be upgraded.
flags

The flags parameter must be set to 0 or the following value:

« DB_DUPSORT

This flag is only meaningful when upgrading databases from releases before the Berkeley DB 3.1
release.

As part of the upgrade from the Berkeley DB 3.0 release to the 3.1 release, the on-disk format of
duplicate data items changed. To correctly upgrade the format requires applications to specify
whether duplicate data items in the database are sorted or not. Specifying the DB_DUPSORT flag
informs DB- >upgr ade() that the duplicates are sorted; otherwise they are assumed to be unsorted.
Incorrectly specifying the value of this flag may lead to database corruption.

Further, because the DB- >upgrade() method upgrades a physical file (including all the databases it
contains), it is not possible to use DB- >upgrade() to upgrade files in which some of the databases it
includes have sorted duplicate data items, and some of the databases it includes have unsorted
duplicate data items. If the file does not have more than a single database, if the databases do not
support duplicate data items, or if all of the databases that support duplicate data items support
the same style of duplicates (either sorted or unsorted), DB- >upgrade() will work correctly as long
as the DB_DUPSORT flag is correctly specified. Otherwise, the file cannot be upgraded using

DB- >upgr ade; () it must be upgraded manually by dumping and reloading the databases.

4/12/2010

DB C API Page 139

../../programmer_reference/am_upgrade.html

DB->upgrade()

Environment Variables

If the database was opened within a database environment, the environment variable DB_HOVE may be
used as the path of the database environment home.

DB- >upgr ade() is affected by any database directory specified using the DB_ENV->set_data_dir() method,
or by setting the "set_data_dir" string in the environment's DB_CONFIG file.

Errors
The DB- >upgr ade() method may fail and return one of the following non-zero errors:
DB_OLD_VERSION
The database cannot be upgraded by this version of the Berkeley DB software.
Class
DB
See Also

Database and Related Methods

4/12/2010 DB C API Page 140

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

DB->verify()

DB->verify()

#i ncl ude <db. h>

int
DB->verify(DB *db, const char *file,
const char *database, FILE *outfile, u_int32_t flags);

The DB->verify() method verifies the integrity of all databases in the file specified by the file
parameter, and optionally outputs the databases' key/data pairs to the file stream specified by the
outfile parameter.

The DB->verify() method does not perform any locking, even in Berkeley DB environments that
are configured with a locking subsystem. As such, it should only be used on files that are not being
modified by another thread of control.

The DB->verify() method may not be called after the DB->open() method is called.
The DB handle may not be accessed again after DB->veri fy() is called, regardless of its return.

The DB->verify() method is the underlying method used by the db_verify utility. See the db_verify
utility source code for an example of using DB- >veri fy() in a IEEE/ANSI Std 1003.1 (POSIX) environment.

The DB- >veri fy() method will return DB_VERIFY_BAD if a database is corrupted. When the DB_SALVAGE
flag is specified, the DB_VERIFY_BAD return means that all key/data pairs in the file may not have
been successfully output. Unless otherwise specified, the DB- >verify() method returns a non-zero
error value on failure and 0 on success.

Parameters

database

The database parameter is the database in file on which the database checks for btree and duplicate
sort order and for hashing are to be performed. See the DB_ORDERCHKONLY flag for more information.

The database parameter must be set to NULL except when the DB_ORDERCHKONLY flag is set.
file

The file parameter is the physical file in which the databases to be verified are found.

flags

The flags parameter must be set to 0 or the following value:

o DB SALVAGE

Write the key/data pairs from all databases in the file to the file stream named in the outfile
parameter. Key values are written for Btree, Hash and Queue databases, but not for Recno databases.

4/12/2010

DB C API Page 141

DB->verify()

The output format is the same as that specified for the db_dump utility, and can be used as input
for the db_load utility.

Because the key/data pairs are output in page order as opposed to the sort order used by db_dump,
using DB- >veri fy() to dump key/data pairs normally produces less than optimal loads for Btree
databases.

In addition, the following flags may be set by bitwise inclusively OR'ing them into the flags parameter:

« DB_AGGRESSI VE

Output all the key/data pairs in the file that can be found. By default, DB- >veri fy() does not assume
corruption. For example, if a key/data pair on a page is marked as deleted, it is not then written to
the output file. When DB_AGGRESSIVE is specified, corruption is assumed, and any key/data pair
that can be found is written. In this case, key/data pairs that are corrupted or have been deleted
may appear in the output (even if the file being salvaged is in no way corrupt), and the output will
almost certainly require editing before being loaded into a database.

DB_PRI NTABLE

When using the DB_SALVAGE flag, if characters in either the key or data items are printing characters
(as defined by isprint(3)), use printing characters to represent them. This flag permits users to use
standard text editors and tools to modify the contents of databases or selectively remove data from
salvager output.

Note: different systems may have different notions about what characters are considered printing
characters, and databases dumped in this manner may be less portable to external systems.

DB_NOORDERCHK
Skip the database checks for btree and duplicate sort order and for hashing.

The DB->veri fy() method normally verifies that btree keys and duplicate items are correctly sorted,
and hash keys are correctly hashed. If the file being verified contains multiple databases using
differing sorting or hashing algorithms, some of them must necessarily fail database verification
because only one sort order or hash function can be specified before DB- >veri fy() is called. To verify
files with multiple databases having differing sorting orders or hashing functions, first perform
verification of the file as a whole by using the DB_NOORDERCHK flag, and then individually verify
the sort order and hashing function for each database in the file using the DB_ORDERCHKONLY flag.

DB_CRDERCHKONLY

Perform the database checks for btree and duplicate sort order and for hashing, skipped by
DB_NOORDERCHK.

When this flag is specified, a database parameter should also be specified, indicating the database
in the physical file which is to be checked. This flag is only safe to use on databases that have already
successfully been verified using DB->veri fy() with the DB_NOORDERCHK flag set.

4/12/2010

DB C API Page 142

DB->verify()

outfile
The outfile parameter is an optional file stream to which the databases’ key/data pairs are written.
Environment Variables

If the database was opened within a database environment, the environment variable DB_HOVE may be
used as the path of the database environment home.

DB- >verify() is affected by any database directory specified using the DB_ENV->set_data_dir() method,
or by setting the "set_data_dir" string in the environment's DB_CONFIG file.

Errors
The DB->verify() method may fail and return one of the following non-zero errors:
EINVAL

If the method was called after DB->open() was called; or if an invalid flag value or parameter was
specified.

ENOENT

The file or directory does not exist.
Class

DB
See Also

Database and Related Methods

4/12/2010 DB C API Page 143

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

Chapter 3. The DBcursor Handle

A DBcursor object is a handle for a cursor into a Berkeley DB database.

DBcursor handles are not free-threaded. Cursor handles may be shared by multiple threads if access
is serialized by the application.

You create a DBcursor using the DB->cursor() method.

If the cursor is to be used to perform operations on behalf of a transaction, the cursor must be opened
and closed within the context of that single transaction.

Once DBcursor->close() has been called, the handle may not be accessed again, regardless of the
method's return.

4/12/2010

DB C API Page 144

Database Cursors and Related Methods

Database Cursors and Related Methods

Database Cursors and Related Methods Description
DB->cursor() Create a cursor handle
DBcursor->close() Close a cursor handle
DBcursor->cmp() Compare two cursors for equality.
DBcursor->count() Return count of duplicates for current key
DBcursor->del() Delete current key/data pair
DBcursor->dup() Duplicate the cursor handle
DBcursor->get() Retrieve by cursor
DBcursor->put() Store by cursor
DBcursor->set_priority(), DBcursor->get_priority() |Set/get the cursor's cache priority

4/12/2010 DB C API Page 145

DB->cursor()

DB->cursor()

#i ncl ude <db. h>

int
DB->cursor (DB *db, DB_TXN *txnid, DBC **cursorp, u_int32_t flags);

The DB- >cur sor () method returns a created database cursor.

Cursors may span threads, but only serially, that is, the application must serialize access to the cursor
handle.

The DB- >cur sor () method returns a non-zero error value on failure and 0 on success.

Parameters

cursorp
The cursorp parameter references memory into which a pointer to the allocated cursor is copied.
flags

The flags parameter must be set to 0 or by bitwise inclusively OR'ing together one or more of the
following values:

« DB_BULK

Configure a cursor to optimize for bulk operations. Each successive operation on a cursor configured
with this flag attempts to continue on the same database page as the previous operation, falling
back to a search if a different page is required. This avoids searching if there is a high degree of
locality between cursor operations. This flag is currently only effective with the btree access method:
for other access methods it is ignored.

« DB_READ_COWM TTED

Configure a transactional cursor to have degree 2 isolation. This ensures the stability of the current
data item read by this cursor but permits data read by this cursor to be modified or deleted prior to
the commit of the transaction for this cursor.

« DB_READ_UNCOWM TTED

Configure a transactional cursor to have degree 1 isolation. Read operations performed by the cursor
may return modified but not yet committed data. Silently ignored if the DB_READ_UNCOMMITTED
flag was not specified when the underlying database was opened.

« DB_WRI TECURSCR

Specify that the cursor will be used to update the database. The underlying database environment
must have been opened using the DB_INIT_CDB flag.

« DB_TXN_SNAPSHOT

4/12/2010

DB C API Page 146

DB->cursor()

Errors

Class

Configure a transactional cursor to operate with read-only snapshot isolation. For databases with
the DB_MULTIVERSION flag set, data values will be read as they are when the cursor is opened,
without taking read locks.

This flag implicitly begins a transaction that is committed when the cursor is closed.

This flag is silently ignored if DB_MULTIVERSION is not set on the underlying database or if a transaction
is supplied in the txnid parameter.

txnid

To transaction-protect cursor operations, cursors must be opened and closed within the context of a
transaction. The txnid parameter specifies the transaction context in which the cursor may be used.

Cursor operations are not automatically transaction-protected, even if the DB_AUTO_COMMIT flag is
specified to the DB_ENV->set_flags() or DB->open() methods. If cursor operations are to be
transaction-protected, the txnid parameter must be a transaction handle returned from
DB_ENV->txn_begin(); otherwise, NULL.

The DB- >cur sor () method may fail and return one of the following non-zero errors:
DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions to be rolled back.
This invalidates all the database and cursor handles opened in the replication environment. Once this
occurs, an attempt to use such a handle will return DB_REP_HANDLE DEAD. The application will need to
discard the handle and open a new one in order to continue processing.

DB_REP_LOCKOUT
The operation was blocked by client/master synchronization.
EINVAL

An invalid flag value or parameter was specified.

DB

See Also

Database Cursors and Related Methods

4/12/2010

DB C API Page 147

../../programmer_reference/transapp_read.html

DBcursor->close()

DBcursor->close()

Errors

Class

#i ncl ude <db. h>

int
DBcur sor - >cl ose(DBC *DBcur sor) ;

The DBcur sor - >cl ose() method discards the cursor.

It is possible for the DBcur sor->cl ose() method to return DB_LOCK_DEADLOCK, signaling that any
enclosing transaction should be aborted. If the application is already intending to abort the transaction,
this error should be ignored, and the application should proceed.

After DBcur sor->cl ose() has been called, regardless of its return, the cursor handle may not be used
again.

The DBcur sor - >cl ose() method returns a non-zero error value on failure and 0 on success.

The DBcur sor - >cl ose() method may fail and return one of the following non-zero errors:
DB_LOCK_DEADLOCK

A transactional database environment operation was selected to resolve a deadlock.
DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was unable
to grant a lock in the allowed time.

EINVAL

If the cursor is already closed; or if an invalid flag value or parameter was specified.

DBcursor

See Also

Database Cursors and Related Methods

4/12/2010

DB C API Page 148

../../programmer_reference/program_errorret.html#program_errorret.DB_LOCK_DEADLOCK

DBcursor->cmp()

DBcursor->cmp()

#i ncl ude <db. h>

i nt
DBcur sor - >cnp(DBC * DBcur sor,
DBC *other _cursor, int *result, u_int32_t flags);

The DBcur sor - >cnmp() method compares two cursors for equality. Two cursors are equal if and only if
they are positioned on the same item in the same database.

The DBcur sor - >cnp() method returns a non-zero error value on failure and 0 on success.

Parameters

Errors

Class

other_cursor
The other_cursor parameter references another cursor handle that will be used as the comparator.
result

If the call is successful and both cursors are positioned on the same item, result is set to zero. If the
call is successful but the cursors are not positioned on the same item, result is set to a non-zero value.
If the call is unsuccessful, the value of result should be ignored.

flags

The flags parameter is currently unused, and must be set to 0.

The DBcur sor - >cnp() method may fail and return one of the following non-zero errors:
EINVAL

« If either of the cursors are already closed.

If the cursors have been opened against different databases.

If either of the cursors have not been positioned.

If the other_dbc parameter is NULL.

If the result parameter is NULL.

DBcursor

4/12/2010

DB C API Page 149

DBcursor->cmp()

See Also

Database Cursors and Related Methods

4/12/2010 DB C API Page 150

DBcursor->count()

DBcursor->count()
#i ncl ude <db. h>

int
DBcur sor - >count (DBC *DBcursor, db_recno_t *countp, u_int32_t flags);

The DBcur sor - >count () method returns a count of the number of data items for the key to which the
cursor refers.

The DBcur sor - >count () method returns a non-zero error value on failure and 0 on success.
Parameters
countp

The countp parameter references memory into which the count of the number of duplicate data items
is copied.

flags
The flags parameter is currently unused, and must be set to 0.
Errors
The DBcur sor - >count () method may fail and return one of the following non-zero errors:
DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions to be rolled back.
This invalidates all the database and cursor handles opened in the replication environment. Once this
occurs, an attempt to use such a handle will return DB_REP_HANDLE DEAD. The application will need to
discard the handle and open a new one in order to continue processing.

DB_REP_LOCKOUT

The operation was blocked by client/master synchronization.

EINVAL

If the cursor has not been initialized; or if an invalid flag value or parameter was specified.
Class

DBcursor
See Also

Database Cursors and Related Methods

4/12/2010 DB C API Page 151

DBcursor->del()

DBcursor->del()

#i ncl ude <db. h>

i nt

DBcur sor - >del (DBC *DBcursor, u_int32_t flags);
The DBcur sor - >del () method deletes the key/data pair to which the cursor refers.
When called on a cursor opened on a database that has been made into a secondary index using the
DB->associate() method, the DB->del() method deletes the key/data pair from the primary database
and all secondary indices.

The cursor position is unchanged after a delete, and subsequent calls to cursor functions expecting the
cursor to refer to an existing key will fail.

The DBcur sor - >del () method will return DB_KEYEMPTY if the element has already been deleted. The
DBcur sor - >del () method returns a non-zero error value on failure and 0 on success.

Parameters

Errors

flags
The flags parameter must be set to 0 or one of the following values:
» DB_CONSUME
If the database is of type DB_QUEUE then this flag may be set to force the head of the queue to

move to the first non-deleted item in the queue. Normally this is only done if the deleted item is
exactly at the head when deleted.

The DBcur sor - >del () method may fail and return one of the following non-zero errors:
DB_FOREIGN_CONFLICT
A foreign key constraint violation has occurred. This can be caused by one of two things:

1. An attempt was made to add a record to a constrained database, and the key used for that record
does not exist in the foreign key database.

2. DB_FOREIGN_ABORT (page 10) was declared for a foreign key database, and then subsequently a
record was deleted from the foreign key database without first removing it from the constrained
secondary database.

DB_LOCK_DEADLOCK

A transactional database environment operation was selected to resolve a deadlock.

4/12/2010

DB C API Page 152

../../programmer_reference/program_errorret.html#program_errorret.DB_KEYEMPTY

DBcursor->del()

Class

DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was unable
to grant a lock in the allowed time.

DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions to be rolled back.
This invalidates all the database and cursor handles opened in the replication environment. Once this
occurs, an attempt to use such a handle will return DB_REP_HANDLE DEAD. The application will need to
discard the handle and open a new one in order to continue processing.

DB_REP_LOCKOUT

The operation was blocked by client/master synchronization.

DB_SECONDARY_BAD

A secondary index references a nonexistent primary key.

EACCES

An attempt was made to modify a read-only database.

EINVAL

If the cursor has not been initialized; or if an invalid flag value or parameter was specified.
EPERM

Write attempted on read-only cursor when the DB_INIT_CDB flag was specified to DB_ENV->open().

DBcursor

See Also

Database Cursors and Related Methods

4/12/2010

DB C API Page 153

DBcursor->dup()

DBcursor->dup()

#i ncl ude <db. h>

i nt
DBcur sor - >dup(DBC *DBcur sor, DBC **cursorp, u_int32_t flags);
The DBcur sor - >dup() method creates a new cursor that uses the same transaction and locker ID as the

original cursor. This is useful when an application is using locking and requires two or more cursors in
the same thread of control.

The DBcur sor - >dup() method returns a non-zero error value on failure and 0 on success.

Parameters

Errors

cursorp

The DBcur sor - >dup() method returns the newly created cursor in cursorp.
flags

The flags parameter must be set to 0 or the following flag:

« DB_PCSI TI ON

The newly created cursor is initialized to refer to the same position in the database as the original
cursor (if any) and hold the same locks (if any). If the DB_POSITION flag is not specified, or the
original cursor does not hold a database position and locks, the created cursor is uninitialized and
will behave like a cursor newly created using the DB->cursor() method.

The DBcur sor - >dup() method may fail and return one of the following non-zero errors:
DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions to be rolled back.
This invalidates all the database and cursor handles opened in the replication environment. Once this
occurs, an attempt to use such a handle will return DB_REP_HANDLE DEAD. The application will need to
discard the handle and open a new one in order to continue processing.

DB_REP_LOCKOUT
The operation was blocked by client/master synchronization.
EINVAL

An invalid flag value or parameter was specified.

4/12/2010

DB C API Page 154

DBcursor->dup()

Class

DBcursor

See Also

Database Cursors and Related Methods

4/12/2010 DB C API Page 155

DBcursor->get()

DBcursor->get()

#i ncl ude <db. h>

int
DBcur sor - >get (DBC *DBcur sor,
DBT *key, DBT *data, u_int32_t flags);

int
DBcur sor - >pget (DBC *DBcur sor,
DBT *key, DBT *pkey, DBT *data, u_int32_t flags);

The DBcur sor - >get () method retrieves key/data pairs from the database. The address and length of
the key are returned in the object to which key refers (except for the case of the DB_SET flag, in which
the key object is unchanged), and the address and length of the data are returned in the object to
which data refers.

When called on a cursor opened on a database that has been made into a secondary index using the
DB->associate() method, the DBcur sor->get () and DBcur sor - >pget () methods return the key from the
secondary index and the data item from the primary database. In addition, the DBcur sor - >pget ()
method returns the key from the primary database. In databases that are not secondary indices, the
DBcur sor - >pget () method will always fail.

Modifications to the database during a sequential scan will be reflected in the scan; that is, records
inserted behind a cursor will not be returned while records inserted in front of a cursor will be returned.

In Queue and Recno databases, missing entries (that is, entries that were never explicitly created or
that were created and then deleted) will be skipped during a sequential scan.

Unless otherwise specified, the DBcur sor - >get () method returns a non-zero error value on failure and
0 on success.

If DBcur sor - >get () fails for any reason, the state of the cursor will be unchanged.

Parameters

data
The data DBT operated on.
flags
The flags parameter must be set to one of the following values:
« DB_CURRENT
Return the key/data pair to which the cursor refers.

The DBcur sor - >get () method will return DB_KEYEMPTY if DB_CURRENT is set and the cursor key/data
pair was deleted.

4/12/2010

DB C API Page 156

../../programmer_reference/program_errorret.html#program_errorret.DB_KEYEMPTY

DBcursor->get()

« DB_FIRST

The cursor is set to refer to the first key/data pair of the database, and that pair is returned. If the
first key has duplicate values, the first data item in the set of duplicates is returned.

If the database is a Queue or Recno database, DBcur sor - >get () using the DB_FIRST flag will ignore
any keys that exist but were never explicitly created by the application, or were created and later
deleted.

The DBcur sor - >get () method will return DB_NOTFOUND if DB_FIRST is set and the database is empty.
DB_GET_BOTH

Move the cursor to the specified key/data pair of the database. The cursor is positioned to a key/data
pair if both the key and data match the values provided on the key and data parameters.

In all other ways, this flag is identical to the DB_SET flag.

When used with DBcur sor - >pget () on a secondary index handle, both the secondary and primary
keys must be matched by the secondary and primary key item in the database. It is an error to use
the DB_GET_BOTH flag with the DBcur sor - >get () version of this method and a cursor that has been
opened on a secondary index handle.

DB_GET_BOTH_RANGE

Move the cursor to the specified key/data pair of the database. The key parameter must be an exact
match with a key in the database. The data item retrieved is the item in a duplicate set that is the
smallest value which is greater than or equal to the value provided by the data parameter (as
determined by the comparison function). If this flag is specified on a database configured without
sorted duplicate support, the behavior is identical to the DB_GET_BOTH flag. Returns the datum
associated with the given key/data pair.

In all other ways, this flag is identical to the DB_GET_BOTH flag.
DB GET_RECNO

Return the record number associated with the cursor. The record number will be returned in data,
as described in DBT. The key parameter is ignored.

For DB_GET_RECNO to be specified, the underlying database must be of type Btree, and it must have
been created with the DB_RECNUM flag.

When called on a cursor opened on a database that has been made into a secondary index, the
DBcur sor - >get () and DBcur sor - >pget () methods return the record number of the primary database
in data. In addition, the DBcur sor - >pget () method returns the record number of the secondary index
in pkey. If either underlying database is not of type Btree or is not created with the DB_RECNUM
flag, the out-of-band record number of 0 is returned.

« DB_JO N | TEM

4/12/2010

DB C API Page 157

../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND

DBcursor->get()

Do not use the data value found in all of the cursors as a lookup key for the primary database, but
simply return it in the key parameter instead. The data parameter is left unchanged.

For DB_JOIN_ITEM to be specified, the underlying cursor must have been returned from the DB->join()
method.

DB_LAST

The cursor is set to refer to the last key/data pair of the database, and that pair is returned. If the
last key has duplicate values, the last data item in the set of duplicates is returned.

If the database is a Queue or Recno database, DBcur sor - >get () using the DB_LAST flag will ignore
any keys that exist but were never explicitly created by the application, or were created and later
deleted.

The DBcur sor - >get () method will return DB_NOTFOUND if DB_LAST is set and the database is empty.
DB_NEXT

If the cursor is not yet initialized, DB_NEXT is identical to DB_FIRST. Otherwise, the cursor is moved
to the next key/data pair of the database, and that pair is returned. In the presence of duplicate
key values, the value of the key may not change.

If the database is a Queue or Recno database, DBcur sor - >get () using the DB_NEXT flag will skip any
keys that exist but were never explicitly created by the application, or those that were created and
later deleted.

The DBcur sor - >get () method will return DB_NOTFOUND if DB_NEXT is set and the cursor is already
on the last record in the database.

DB_NEXT_DUP

If the next key/data pair of the database is a duplicate data record for the current key/data pair,
the cursor is moved to the next key/data pair of the database, and that pair is returned.

The DBcur sor - >get () method will return DB_NOTFOUND if DB_NEXT_DUP is set and the next key/data
pair of the database is not a duplicate data record for the current key/data pair.

DB_NEXT_NCDUP

If the cursor is not yet initialized, DB_NEXT_NODUP is identical to DB_FIRST. Otherwise, the cursor
is moved to the next non-duplicate key of the database, and that key/data pair is returned.

If the database is a Queue or Recno database, DBcur sor - >get () using the DB_NEXT_NODUP flag will
ignore any keys that exist but were never explicitly created by the application, or those that were
created and later deleted.

The DBcur sor - >get () method will return DB_NOTFOUND if DB_NEXT_NODUP is set and no non-duplicate
key/data pairs exist after the cursor position in the database.

« DB_PREV

4/12/2010

DB C API Page 158

../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND
../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND
../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND
../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND

DBcursor->get()

If the cursor is not yet initialized, DB_PREYV is identical to DB_LAST. Otherwise, the cursor is moved
to the previous key/data pair of the database, and that pair is returned. In the presence of duplicate
key values, the value of the key may not change.

If the database is a Queue or Recno database, DBcur sor - >get () using the DB_PREV flag will skip any
keys that exist but were never explicitly created by the application, or those that were created and
later deleted.

The DBcur sor - >get () method will return DB_NOTFOUND if DB_PREYV is set and the cursor is already
on the first record in the database.

DB_PREV_DUP

If the previous key/data pair of the database is a duplicate data record for the current key/data
pair, the cursor is moved to the previous key/data pair of the database, and that pair is returned.

The DBcur sor - >get () method will return DB_NOTFOUND if DB_PREV_DUP is set and the previous
key/data pair of the database is not a duplicate data record for the current key/data pair.

DB_PREV_NCDUP

If the cursor is not yet initialized, DB_PREV_NODUP is identical to DB_LAST. Otherwise, the cursor
is moved to the previous non-duplicate key of the database, and that key/data pair is returned.

If the database is a Queue or Recno database, DBcur sor - >get () using the DB_PREV_NODUP flag will
ignore any keys that exist but were never explicitly created by the application, or those that were
created and later deleted.

The DBcur sor - >get () method will return DB_NOTFOUND if DB_PREV_NODUP is set and no non-duplicate
key/data pairs exist before the cursor position in the database.

DB_SET

Move the cursor to the specified key/data pair of the database, and return the datum associated
with the given key.

The DBcur sor - >get () method will return DB_NOTFOUND if DB_SET is set and no matching keys are
found. The DBcur sor - >get () method will return DB_KEYEMPTY if DB_SET is set and the database is
a Queue or Recno database, and the specified key exists, but was never explicitly created by the
application or was later deleted. In the presence of duplicate key values, DBcur sor - >get () will return
the first data item for the given key.

DB_SET_RANGE

Move the cursor to the specified key/data pair of the database. In the case of the Btree access
method, the key is returned as well as the data item and the returned key/data pair is the smallest
key greater than or equal to the specified key (as determined by the Btree comparison function),
permitting partial key matches and range searches.

In all other ways the behavior of this flag is the same as the DB_SET flag.

4/12/2010

DB C API Page 159

../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND
../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND
../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND
../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND
../../programmer_reference/program_errorret.html#program_errorret.DB_KEYEMPTY

DBcursor->get()

« DB_SET_RECNO

Move the cursor to the specific numbered record of the database, and return the associated key/data
pair. The data field of the specified key must be a pointer to a memory location from which a
db_recno_t may be read, as described in DBT. This memory location will be read to determine the
record to be retrieved.

For DB_SET_RECNO to be specified, the underlying database must be of type Btree, and it must have
been created with the DB_RECNUM flag.

In addition, the following flags may be set by bitwise inclusively OR'ing them into the flags parameter:

« DB | GNORE_LEASE

This flag is relevant only when using a replicated environment.

Return the data item irrespective of the state of master leases. The item will be returned under all
conditions: if master leases are not configured, if the request is made to a client, if the request is
made to a master with a valid lease, or if the request is made to a master without a valid lease.

DB_READ_COW TTED
Configure a transactional get operation to have degree 2 isolation (the read is not repeatable).
DB_READ_UNCOWM TTED

Database items read during a transactional call will have degree 1 isolation, including modified but
not yet committed data. Silently ignored if the DB_READ_UNCOMMITTED flag was not specified when
the underlying database was opened.

DB_MULTI PLE
Return multiple data items in the data parameter.

In the case of Btree or Hash databases, duplicate data items for the current key, starting at the
current cursor position, are entered into the buffer. Subsequent calls with both the DB_NEXT_DUP
and DB_MULTIPLE flags specified will return additional duplicate data items associated with the
current key or DB_NOTFOUND if there are no additional duplicate data items to return. Subsequent
calls with both the DB_NEXT and DB_MULTIPLE flags specified will return additional duplicate data
items associated with the current key or if there are no additional duplicate data items will return
the next key and its data items or DB_NOTFOUND if there are no additional keys in the database.

In the case of Queue or Recno databases, data items starting at the current cursor position are
entered into the buffer. The record number of the first record will be returned in the key parameter.
The record number of each subsequent returned record must be calculated from this value. Subsequent
calls with the DB_MULTIPLE flag specified will return additional data items or DB_NOTFOUND if there
are no additional data items to return.

The buffer to which the data parameter refers must be provided from user memory (see
DB_DBT_USERMEM). The buffer must be at least as large as the page size of the underlying database,
aligned for unsigned integer access, and be a multiple of 1024 bytes in size. If the buffer size is

4/12/2010

DB C API Page 160

../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND
../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND
../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND

DBcursor->get()

insufficient, then upon return from the call the size field of the data parameter will have been set
to an estimated buffer size, and the error DB_BUFFER_SMALL is returned. (The size is an estimate
as the exact size needed may not be known until all entries are read. It is best to initially provide a
relatively large buffer, but applications should be prepared to resize the buffer as necessary and
repeatedly call the method.)

The multiple data items can be iterated over using the DB_MULTIPLE_NEXT macro.

The DB_MULTIPLE flag may only be used with the DB_CURRENT, DB_FIRST, DB_GET_BOTH,
DB_GET_BOTH_RANGE, DB_NEXT, DB_NEXT_DUP, DB_NEXT_NODUP, DB_SET, DB_SET_RANGE, and
DB_SET_RECNO options. The DB_MULTIPLE flag may not be used when accessing databases made
into secondary indices using the DB->associate() method.

o DB_MULTI PLE_KEY
Return multiple key and data pairs in the data parameter.

Key and data pairs, starting at the current cursor position, are entered into the buffer. Subsequent
calls with both the DB_NEXT and DB_MULTIPLE_KEY flags specified will return additional key and
data pairs or DB_NOTFOUND if there are no additional key and data items to return.

In the case of Btree or Hash databases, the multiple key and data pairs can be iterated over using
the DB_MULTIPLE_KEY_NEXT macro.

In the case of Queue or Recno databases, the multiple record number and data pairs can be iterated
over using the DB_MULTIPLE_RECNO_NEXT macro.

The buffer to which the data parameter refers must be provided from user memory (see
DB_DBT_USERMEM). The buffer must be at least as large as the page size of the underlying database,
aligned for unsigned integer access, and be a multiple of 1024 bytes in size. If the buffer size is
insufficient, then upon return from the call the size field of the data parameter will have been set
to an estimated buffer size, and the error DB_BUFFER_SMALL is returned. (The size is an estimate
as the exact size needed may not be known until all entries are read. It is best to initially provide a
relatively large buffer, but applications should be prepared to resize the buffer as necessary and
repeatedly call the method.)

The DB_MULTIPLE_KEY flag may only be used with the DB_CURRENT, DB_FIRST, DB_GET_BOTH,
DB_GET_BOTH_RANGE, DB_NEXT, DB_NEXT_DUP, DB_NEXT_NODUP, DB_SET, DB_SET_RANGE, and
DB_SET_RECNO options. The DB_MULTIPLE_KEY flag may not be used when accessing databases made
into secondary indices using the DB->associate() method.

« DB_RWW

Acquire write locks instead of read locks when doing the read, if locking is configured. Setting this
flag can eliminate deadlock during a read-modify-write cycle by acquiring the write lock during the
read part of the cycle so that another thread of control acquiring a read lock for the same item, in
its own read-modify-write cycle, will not result in deadlock.

key

The key DBT operated on.

4/12/2010 DB C API Page 161

../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND

DBcursor->get()

Errors

Class

pkey

The secondary index key DBT operated on.

The DBcur sor - >get () method may fail and return one of the following non-zero errors:
DB_BUFFER_SMALL

The requested item could not be returned due to undersized buffer.
DB_LOCK_DEADLOCK

A transactional database environment operation was selected to resolve a deadlock.
DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was unable
to grant a lock in the allowed time.

DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions to be rolled back.
This invalidates all the database and cursor handles opened in the replication environment. Once this
occurs, an attempt to use such a handle will return DB_REP_HANDLE DEAD. The application will need to
discard the handle and open a new one in order to continue processing.

DB_REP_LEASE_EXPIRED

The operation failed because the site's replication master lease has expired.
DB_REP_LOCKOUT

The operation was blocked by client/master synchronization.
DB_SECONDARY_BAD

A secondary index references a nonexistent primary key.

EINVAL

If the DB_CURRENT, DB_NEXT_DUP or DB_PREV_DUP flags were specified and the cursor has not been
initialized; the DBcur sor - >pget () method was called with a cursor that does not refer to a secondary
index; or if an invalid flag value or parameter was specified.

DBcursor

4/12/2010

DB C API Page 162

DBcursor->get()

See Also

Database Cursors and Related Methods

4/12/2010 DB C API Page 163

DBcursor->get_priority()

DBcursor->get_priority()
#i ncl ude <db. h>

int
DBcur sor->get _priority(DBC *DbCursor, DB _CACHE PRIORITY *priorityp);

The DBcursor->get _priority() method returns the cache priority for pages referenced by the DBcursor
handle.

The DBcur sor->get _priority() method may be called at any time during the life of the application.

The DBcur sor->get _priority() method returns a non-zero error value on failure and 0 on success.
Parameters

priorityp

The DBcur sor->get _priority() method returns a reference to the cache priority for pages referenced
by the DBcursor handle in priorityp.

Class

DBcursor

See Also

Database Cursors and Related Methods

4/12/2010 DB C API Page 164

DBcursor->put()

DBcursor->put()

#i ncl ude <db. h>

int
DBcur sor - >put (DBC *DBcur sor, DBT *key, DBT *data, u_int32_t flags);

The DBcur sor - >put () method stores key/data pairs into the database.

Unless otherwise specified, the DBcur sor - >put () method returns a non-zero error value on failure and
0 on success.

If DBcur sor->put () fails for any reason, the state of the cursor will be unchanged. If DBcur sor - >put ()
succeeds and an item is inserted into the database, the cursor is always positioned to refer to the
newly inserted item.

Parameters

data

The data DBT operated on.

flags

The flags parameter must be set to one of the following values:
« DB AFTER

In the case of the Btree and Hash access methods, insert the data element as a duplicate element
of the key to which the cursor refers. The new element appears immediately after the current cursor
position. It is an error to specify DB_AFTER if the underlying Btree or Hash database is not configured
for unsorted duplicate data items. The key parameter is ignored.

In the case of the Recno access method, it is an error to specify DB_AFTER if the underlying Recno
database was not created with the DB_RENUMBER flag. If the DB_RENUMBER flag was specified, a
new key is created, all records after the inserted item are automatically renumbered, and the key
of the new record is returned in the structure to which the key parameter refers. The initial value
of the key parameter is ignored. See DB->open() for more information.

The DB_AFTER flag may not be specified to the Queue access method.

The DBcur sor - >put () method will return DB_NOTFOUND if the current cursor record has already
been deleted and the underlying access method is Hash.

« DB_BEFORE

In the case of the Btree and Hash access methods, insert the data element as a duplicate element
of the key to which the cursor refers. The new element appears immediately before the current
cursor position. It is an error to specify DB_AFTER if the underlying Btree or Hash database is not
configured for unsorted duplicate data items. The key parameter is ignored.

4/12/2010

DB C API Page 165

../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND

DBcursor->put()

In the case of the Recno access method, it is an error to specify DB_BEFORE if the underlying Recno
database was not created with the DB_RENUMBER flag. If the DB_RENUMBER flag was specified, a
new key is created, the current record and all records after it are automatically renumbered, and
the key of the new record is returned in the structure to which the key parameter refers. The initial
value of the key parameter is ignored. See DB->open() for more information.

The DB_BEFORE flag may not be specified to the Queue access method.

The DBcur sor - >put () method will return DB_NOTFOUND if the current cursor record has already
been deleted and the underlying access method is Hash.

« DB_CURRENT

Overwrite the data of the key/data pair to which the cursor refers with the specified data item. The
key parameter is ignored.

The DBcur sor - >put () method will return DB_NOTFOUND if the current cursor record has already
been deleted.

o DB_KEYFI RST
Insert the specified key/data pair into the database.

If the underlying database supports duplicate data items, and if the key already exists in the database
and a duplicate sort function has been specified, the inserted data item is added in its sorted location.
If the key already exists in the database and no duplicate sort function has been specified, the
inserted data item is added as the first of the data items for that key.

o DB_KEYLAST
Insert the specified key/data pair into the database.

If the underlying database supports duplicate data items, and if the key already exists in the database
and a duplicate sort function has been specified, the inserted data item is added in its sorted location.
If the key already exists in the database, and no duplicate sort function has been specified, the
inserted data item is added as the last of the data items for that key.

» DB_NCDUPDATA

In the case of the Btree and Hash access methods, insert the specified key/data pair into the database,
unless a key/data pair comparing equally to it already exists in the database. If a matching key/data
pair already exists in the database, DB_KEYEXIST is returned. The DB_NODUPDATA flag may only be
specified if the underlying database has been configured to support sorted duplicate data items.

The DB_NODUPDATA flag may not be specified to the Queue or Recno access methods.
key

The key DBT operated on.

4/12/2010 DB C API Page 166

../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND
../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND

DBcursor->put()

Errors

The DBcur sor - >put () method may fail and return one of the following non-zero errors:
DB_KEYEXIST

An attempt was made to insert a duplicate key into a database not configured for duplicate data.
DB_FOREIGN_CONFLICT

A foreign key constraint violation has occurred. This can be caused by one of two things:

1. An attempt was made to add a record to a constrained database, and the key used for that record
does not exist in the foreign key database.

2. DB_FOREIGN_ABORT (page 10) was declared for a foreign key database, and then subsequently a
record was deleted from the foreign key database without first removing it from the constrained
secondary database.

DB_LOCK_DEADLOCK
A transactional database environment operation was selected to resolve a deadlock.
DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was unable
to grant a lock in the allowed time.

DB_REP_HANDLE_DEAD

When a client synchronizes with the master, it is possible for committed transactions to be rolled back.
This invalidates all the database and cursor handles opened in the replication environment. Once this
occurs, an attempt to use such a handle will return DB_REP_HANDLE DEAD. The application will need to
discard the handle and open a new one in order to continue processing.

DB_REP_LOCKOUT

The operation was blocked by client/master synchronization.
EACCES

An attempt was made to modify a read-only database.
EINVAL

If the DB_AFTER, DB_BEFORE or DB_CURRENT flags were specified and the cursor has not been initialized;
the DB_AFTER or DB_BEFORE flags were specified and a duplicate sort function has been specified; the
DB_CURRENT flag was specified, a duplicate sort function has been specified, and the data item of the
referenced key/data pair does not compare equally to the data parameter; the DB_AFTER or DB_BEFORE
flags were specified, and the underlying access method is Queue; an attempt was made to add a record
to a fixed-length database that was too large to fit; an attempt was made to add a record to a secondary
index; or if an invalid flag value or parameter was specified.

4/12/2010

DB C API Page 167

DBcursor->put()

EPERM

Write attempted on read-only cursor when the DB_INIT_CDB flag was specified to DB_ENV->open().

Class

DBcursor

See Also

Database Cursors and Related Methods

4/12/2010 DB C API Page 168

DBcursor->set_priority()

DBcursor->set_priority()
#i ncl ude <db. h>

int
DBcur sor->set _priority(DBC *DbCursor, DB CACHE PRICRITY priority);

Set the cache priority for pages referenced by the DBcursor handle.

The priority of a page biases the replacement algorithm to be more or less likely to discard a page
when space is needed in the buffer pool. The bias is temporary, and pages will eventually be discarded
if they are not referenced again. The DBcur sor->set _priority() method is only advisory, and does not
guarantee pages will be treated in a specific way.

The DBcursor->set _priority() method may be called at any time during the life of the application.

The DBcursor->set _priority() method returns a non-zero error value on failure and 0 on success.
Parameters

priority

The priority parameter must be set to one of the following values:

« DB_PRI ORI TY_VERY_LOW

The lowest priority: pages are the most likely to be discarded.
« DB PRICRI TY_LOW

The next lowest priority.

DB PRI ORI TY_DEFAULT
The default priority.
« DB PRIORI TY H GH

The next highest priority.

DB_PRI ORI TY_VERY_Hl GH

The highest priority: pages are the least likely to be discarded.

Class

DBcursor

See Also

Database Cursors and Related Methods

4/12/2010 DB C API Page 169

Chapter 4. The DBT Handle

#i ncl ude <db. h>

typedef struct {
voi d *dat a;
u_int32_t size;
u_int32_t ulen;
u_int32_t dlen;
u_int32_ t doff;
u_int32_t flags;

} DBT;

Storage and retrieval for the DB access methods are based on key/data pairs. Both key and data items
are represented by the DBT data structure. (The name DBT is a mnemonic for data base thang, and
was used because no one could think of a reasonable name that wasn't already in use somewhere else.)
Key and data byte strings may refer to strings of zero length up to strings of essentially unlimited
length. See Database limits for more information.

All fields of the DBT structure that are not explicitly set should be initialized to nul bytes before the
first time the structure is used. Do this by declaring the structure external or static, or by calling the
C library routine memset(3).

By default, the flags structure element is expected to be set to 0. In this default case, when the
application is providing Berkeley DB a key or data item to store into the database, Berkeley DB expects
the data structure element to point to a byte string of size bytes. When returning a key/data item to
the application, Berkeley DB will store into the data structure element a pointer to a byte string of
size bytes, and the memory to which the pointer refers will be allocated and managed by Berkeley
DB. Note that using the default flags for returned DBTs is only compatible with single threaded usage
of Berkeley DB.

The elements of the DBT structure are defined as follows:
» void *data;
A pointer to a byte string.
e u_int32_t size;
The length of data, in bytes.
e u_int32_t ulen;

The size of the user's buffer (to which data refers), in bytes. This location is not written by the
Berkeley DB functions.

Set the byte size of the user-specified buffer.

4/12/2010

DB C API Page 170

../../programmer_reference/am_misc_dbsizes.html

Note that applications can determine the length of a record by setting the ul en field to 0 and checking
the return value in the size field. See the DB_DBT_USERMEMflag for more information.

u_int32_t dlen;

The length of the partial record being read or written by the application, in bytes. See the
DB _DBT_PARTI AL flag for more information.

u_int32_t doff;

The offset of the partial record being read or written by the application, in bytes. See the
DB DBT_PARTI AL flag for more information.

u_int32_t flags;

The flags parameter must be set to 0 or by bitwise inclusively OR'ing together one or more of the
following values:

« DB_DBT_MALLCC

When this flag is set, Berkeley DB will allocate memory for the returned key or data item (using
malloc(3), or the user-specified malloc function), and return a pointer to it in the data field of
the key or data DBT structure. Because any allocated memory becomes the responsibility of the
calling application, the caller must determine whether memory was allocated using the returned
value of the data field.

It is an error to specify more than one of DB_DBT_MALLOC, DB DBT_REALLCC, and DB_DBT_USERMVEM
» DB DBT_REALLCC

When this flag is set Berkeley DB will allocate memory for the returned key or data item (using
realloc(3), or the user-specified realloc function), and return a pointer to it in the data field of
the key or data DBT structure. Because any allocated memory becomes the responsibility of the
calling application, the caller must determine whether memory was allocated using the returned
value of the data field.

The difference between DB_DBT MALLOC and DB _DBT REALLQOC is that the latter will call realloc(3)
instead of malloc(3), so the allocated memory will be grown as necessary instead of the application
doing repeated free/malloc calls.

It is an error to specify more than one of DB_DBT_MALLOC, DB_DBT_REALLCC, and DB_DBT_USERVEM
» DB _DBT_USERMEM

The data field of the key or data structure must refer to memory that is at least ulen bytes in
length. If the length of the requested item is less than or equal to that number of bytes, the item
is copied into the memory to which the data field refers. Otherwise, the size field is set to the
length needed for the requested item, and the error DB_BUFFER SMALL is returned.

It is an error to specify more than one of DB_DBT_MALLOC, DB DBT_REALLCC, and DB_DBT_USERMVEM

4/12/2010

DB C API Page 171

« DB_DBT_PARTI AL

Do partial retrieval or storage of an item. If the calling application is doing a get, the dlen bytes
starting doff bytes from the beginning of the retrieved data record are returned as if they comprised
the entire record. If any or all of the specified bytes do not exist in the record, the get is successful,
and any existing bytes are returned.

For example, if the data portion of a retrieved record was 100 bytes, and a partial retrieval was
done using a DBT having a dlen field of 20 and a doff field of 85, the get call would succeed, the
data field would refer to the last 15 bytes of the record, and the size field would be set to 15.

If the calling application is doing a put, the dlen bytes starting doff bytes from the beginning of
the specified key's data record are replaced by the data specified by the data and size structure
elements. If dlen is smaller than size the record will grow; if dlen is larger than size the record
will shrink. If the specified bytes do not exist, the record will be extended using nul bytes as
necessary, and the put call will succeed.

It is an error to attempt a partial put using the DB->put() method in a database that supports
duplicate records. Partial puts in databases supporting duplicate records must be done using a
DBcursor->put() method.

It is an error to attempt a partial put with differing dlen and size values in Queue or Recno
databases with fixed-length records.

For example, if the data portion of a retrieved record was 100 bytes, and a partial put was done
using a DBT having a dlen field of 20, a doff field of 85, and a size field of 30, the resulting record
would be 115 bytes in length, where the last 30 bytes would be those specified by the put call.

« DB_DBT_APPMALLOC

After an application-supplied callback routine passed to either DB->associate() or
DB->set_append_recno() is executed, the data field of a DBT may refer to memory allocated with
malloc(3) or realloc(3). In that case, the callback sets the DB_DBT_APPMALLQCC flag in the DBT so
that Berkeley DB will call free(3) to deallocate the memory when it is no longer required.

« DB_DBT_MJLTI PLE

Set in a secondary key creation callback routine passed to DB->associate() to indicate that multiple
secondary keys should be associated with the given primary key/data pair. If set, the size field
indicates the number of secondary keys and the data field refers to an array of that number of
DBT structures.

The DB_DBT_APPMALLCC flag may be set on any of the DBT structures to indicate that their data
field needs to be freed.

4/12/2010 DB C API Page 172

DBT and Bulk Operations

DBT and Bulk Operations

DBT and Bulk Operations

Description

DB_MULTIPLE_INIT

Initialize bulk get retrieval

DB_MULTIPLE_NEXT

Next bulk get retrieval

DB_MULTIPLE_KEY_NEXT

Next bulk get retrieval

DB_MULTIPLE_RECNO_NEXT

Next bulk get retrieval

DB_MULTIPLE_WRITE_INIT

Initialize a bulk buffer to hold key/data pairs

DB_MULTIPLE_WRITE_NEXT

Append a data item to a bulk buffer

DB_MULTIPLE_RESERVE_NEXT

Reserve space for a data item in a bulk buffer

DB_MULTIPLE_KEY_WRITE_NEXT

Append a key / data pair to a bulk buffer

DB_MULTIPLE_KEY_RESERVE_NEXT

Reserve space for a key / data pair in a bulk buffer

DB_MULTIPLE_RECNO_WRITE_INIT

Initialize a bulk buffer to hold recno/data pairs

DB_MULTIPLE_RECNO_WRITE_NEXT

Append a record number / data pair to a bulk
buffer

DB_MULTIPLE_RECNO_RESERVE_NEXT

Reserve space for a record number / data pair in
a bulk buffer

4/12/2010

DB C API

Page 173

DB_MULTIPLE_INIT

DB_MULTIPLE_INIT

#i ncl ude <db. h>

DB_MULTIPLE INI T(void *pointer, DBT *data);

If either of the DB_MULTIPLE or DB_MULTIPLE_KEY flags were specified to the DB->get() or
DBcursor->get() methods, the data DBT returned by those interfaces will refer to a buffer that is filled

with data. Access to that data is through the DB_MULTIPLE_* macros.

This macro initializes a variable used for bulk retrieval.

Parameters
pointer
The pointer parameter is a variable to be initialized.

data

The data parameter is a DBT structure returned from a successful call to DB->get() or DBcursor->get()
for which one of the DB_MULTIPLE or DB_MULTIPLE_KEY flags were specified.

Class
DBT

See Also

DBT and Bulk Operations

4/12/2010 DB C API Page 174

DB_MULTIPLE_NEXT

DB_MULTIPLE_NEXT

#i ncl ude <db. h>

DB_MULTI PLE_NEXT(voi d *pointer, DBT *data, void *retdata,
size_t retdlen);

If either of the DB_MULTIPLE or DB_MULTIPLE_KEY flags were specified to the DB->get() or
DBcursor->get() methods, the data DBT returned by those interfaces will refer to a buffer that is filled
with data. Access to that data is through the DB_MULTIPLE_* macros.
Returns the next DBT in the bulk retrieval set.

Parameters
pointer
The pointer parameter is a variable that must have been initialized by a call to DB_MULTIPLE_INIT.
This parameter is set to NULL if there are no more key/data pairs in the returned set.

data

The data parameter is a DBT structure returned from a successful call to DB->get() or DBcursor->get()
for which he DB_MULTIPLE flag was specified.

The data parameter must have been initialized by a call to DB_MULTIPLE_INIT.
retdata

The retdata is set to the next data element in the returned set.

retdlen

The retdlen parameter is set to the length, in bytes, of that data element. When used with the Queue
and Recno access methods, retdata parameter will be set to NULL for deleted records.

Class
DBT
See Also

DBT and Bulk Operations

4/12/2010 DB C API Page 175

DB_MULTIPLE_KEY_NEXT

DB_MULTIPLE_KEY_NEXT

#i ncl ude <db. h>

DB_MULTI PLE_KEY_NEXT(voi d *pointer, DBT *data,
void *retkey, size t retklen, void *retdata, size_t retdlen);

If either of the DB_MULTIPLE or DB_MULTIPLE_KEY flags were specified to the DB->get() or
DBcursor->get() methods, the data DBT returned by those interfaces will refer to a buffer that is filled
with data. Access to that data is through the DB_MULTIPLE_* macros.

Returns the next DBT in the bulk retrieval set. Use this macro with DBT structures obtained from a
database that uses the Btree or Hash access methods.

Parameters

Class

pointer

The pointer parameter is a variable that must have been initialized by a call to DB_MULTIPLE_INIT.
This parameter is set to NULL if there are no more key/data pairs in the returned set.

data

The data parameter is a DBT structure returned from a successful call to DBcursor->get() with the Btree
or Hash access methods for which the DB_MULTIPLE_KEY flag was specified.

The data parameter must have been initialized by a call to DB_MULTIPLE_INIT.
retkey

The retkey parameter is set to the next key element in the returned set.
retklen

The retklen parameter is set to the length, in bytes, of the next key element.
retdata

The retdata parameter is set to the next data element in the returned set.
retdlen

The retdlen parameter is set to the length, in bytes, of the next data element.

DBT

See Also

DBT and Bulk Operations

4/12/2010

DB C API Page 176

DB_MULTIPLE_RECNO_NEXT

DB_MULTIPLE_RECNO_NEXT

#i ncl ude <db. h>

DB_MULTI PLE_RECNO NEXT(voi d *pointer, DBT *dat a,
db_recno_t recno, void * retdata, size t retdlen);

If either of the DB_MULTIPLE or DB_MULTIPLE_KEY flags were specified to the DB->get() or
DBcursor->get() methods, the data DBT returned by those interfaces will refer to a buffer that is filled
with data. Access to that data is through the DB_MULTIPLE_* macros.

Returns the next DBT in the bulk retrieval set. Use this macro with DBT structures obtained from a
database that uses the Queue or Recno access methods.

Parameters
pointer
The pointer parameter is a variable that must have been initialized by a call to DB_MULTIPLE_INIT.
This parameter is set to NULL if there are no more key/data pairs in the returned set.
data

The data parameter is a DBT structure returned from a successful call to DBcursor->get() with the
Queue or Recno access methods for which the DB_MULTIPLE_KEY flag was specified.

The data parameter must have been initialized by a call to DB_MULTIPLE_INIT.

recno

The recno parameter is set to the record number of the next record in the returned set.
retdata

The retdata parameter is set to the next data element in the returned set. Deleted records are not
included in the results.

retdlen

The retdlen parameter is set to the length, in bytes, of the next data element.
Class

DBT
See Also

DBT and Bulk Operations

4/12/2010 DB C API Page 177

DB_MULTIPLE_WRITE_INIT

DB_MULTIPLE_WRITE_INIT

#incl ude <db. h>
DB_MULTI PLE WRI TE I NI T(voi d *pointer, DBT *data);

Initialize a DBT containing a bulk buffer for use with the DB_MULTIPLE or DB_MULTIPLE_KEY flags to
the DB->put() or DB->del() methods.

This macro initializes an opaque pointer variable used for adding records to a bulk buffer. Use this
macro for buffers that will contain either a data item per record (for use with DB_MULTIPLE), or
key/data pairs, where the key is not a record number. For record number keys, use
DB_MULTIPLE_RECNO_WRITE_INIT.

Parameters
pointer
The pointer parameter is an opaque pointer variable to be initialized.
data

The data parameter is a DBT structure that has been initialized by the application with a buffer to
hold multiple records. The ulen field must be set to the size of the buffer allocated by the application,
and must be a multiple of 4.

Class
DBT

See Also

DBT and Bulk Operations

4/12/2010 DB C API Page 178

DB_MULTIPLE_WRITE_NEXT

DB_MULTIPLE_WRITE_NEXT

#i ncl ude <db. h>

DB_MULTI PLE WRI TE_NEXT(voi d *pointer, DBT *dbt, void *data,
size_t dlen);

Appends a data item to the bulk buffer.
Parameters

pointer

The pointer parameter is a variable that must have been initialized by a call to
DB_MULTIPLE_WRITE_INIT.

This parameter is set to NULL if the data item does not fit in the buffer.
dbt
The dbt parameter is a DBT structure initialized with DB_MULTIPLE_WRITE_INIT.
data
A pointer to the bytes to be copied into the bulk buffer.
dlen
The number of bytes to be copied.
Class
DBT
See Also

DBT and Bulk Operations

4/12/2010 DB C API Page 179

DB_MULTIPLE_RESERVE_NEXT

DB_MULTIPLE_RESERVE_NEXT

#i ncl ude <db. h>

DB_MULTI PLE_RESERVE_NEXT(voi d *pointer, DBT *dbt,
void *ddest, size_t dlen);

Reserves space for a data item in a bulk buffer.
Parameters

pointer

The pointer parameter is a variable that must have been initialized by a call to
DB_MULTIPLE_WRITE_INIT.

ddest

The ddest parameter is set to the location reserved in the bulk buffer for the data item.
This parameter is set to NULL if the data item does not fit in the buffer.
dlen
The number of bytes to be reserved for the data item.
Class
DBT
See Also

DBT and Bulk Operations

4/12/2010 DB C API Page 180

DB_MULTIPLE_KEY_WRITE_NEXT

DB_MULTIPLE_KEY_WRITE_NEXT

#i ncl ude <db. h>

DB_MULTI PLE_KEY_WRI TE_NEXT(voi d *poi nter, DBT *dbt,
void *key, size t klen, void *data, size t dlen);

Appends a key / data pair to the bulk buffer.

Parameters

Class

pointer

The pointer parameter is a variable that must have been initialized by a call to
DB_MULTIPLE_WRITE_INIT.

This parameter is set to NULL if the data item does not fit in the buffer.

dbt

The dbt parameter is a DBT structure initialized with DB_MULTIPLE_WRITE_INIT.
key

A pointer to the bytes for the key to be copied into the bulk buffer.

klen

The number of bytes to be copied for the key.

data

A pointer to the bytes for the data item to be copied into the bulk buffer.

dlen

The number of bytes to be copied for the data item.

DBT

See Also

DBT and Bulk Operations

4/12/2010

DB C API

Page 181

DB_MULTIPLE_KEY_RESERVE_NEXT

DB_MULTIPLE_KEY_RESERVE_NEXT

#i ncl ude <db. h>

DB_MULTI PLE_KEY_RESERVE_NEXT(voi d *poi nter, DBT *dbt,
void *kdest, size_ t klen, void *ddest, size_t dlen);

Reserves space for a key / data pair in a bulk buffer.
Parameters

pointer

The pointer parameter is a variable that must have been initialized by a call to
DB_MULTIPLE_WRITE_INIT.

kdest
The kdest parameter is set to the location reserved in the bulk buffer for the key.
This parameter is set to NULL if the data item does not fit in the buffer.
klen
The number of bytes to be reserved for the key.
ddest
The ddest parameter is set to the location reserved in the bulk buffer for the data item.
This parameter is set to NULL if the data item does not fit in the buffer.
dlen
The number of bytes to be reserved for the data item.
Class

DBT

See Also

DBT and Bulk Operations

4/12/2010 DB C API Page 182

DB_MULTIPLE_RECNO_WRITE_INIT

DB_MULTIPLE_RECNO_WRITE_INIT
#incl ude <db. h>

DB_MJLTI PLE_RECNO WRI TE_I NI T(voi d *pointer, DBT *data);

Initialize a DBT containing a bulk buffer for use with the DB_MULTIPLE or DB_MULTIPLE_KEY flags to
the DB->put() or DB->del() methods, if the buffer will contain record number keys.

This macro initializes an opaque pointer variable used for adding records to a bulk buffer. Use this
macro for buffers that will contain either a list of record numbers (for use with DB_MULTIPLE), or
key/data pairs, where the key is a record number.

Parameters
pointer
The pointer parameter is an opaque pointer variable to be initialized.

data

The data parameter is a DBT structure that has been initialized by the application with a buffer to
hold multiple records. The ulen field must be set to the size of the buffer allocated by the application,
which must be a multiple of 4.

Class
DBT

See Also

DBT and Bulk Operations

4/12/2010 DB C API Page 183

DB_MULTIPLE_RECNO_WRITE_NEXT

DB_MULTIPLE_RECNO_WRITE_NEXT

#i ncl ude <db. h>

DB_MULTI PLE_RECNO WRI TE_NEXT(voi d *poi nter, DBT *dat a,
db_recno_t recno, void *data, size_ t dlen);

Appends a record number / data pair to the bulk buffer.

Parameters
pointer

The pointer parameter is a variable that must have been initialized by a call to
DB_MULTIPLE_RECNO_WRITE_INIT.

This parameter is set to NULL if the data item does not fit in the buffer.
dbt
The dbt parameter is a DBT structure initialized with DB_MULTIPLE_WRITE_INIT.
recno
The record number to be copied into the bulk buffer.
data
A pointer to the bytes to be copied into the bulk buffer.
dlen
The number of bytes to be copied.
Class
DBT
See Also

DBT and Bulk Operations

4/12/2010 DB C API Page 184

DB_MULTIPLE_RECNO_RESERVE_NEXT

DB_MULTIPLE_RECNO_RESERVE_NEXT

#i ncl ude <db. h>

DB_MULTI PLE_RECNO RESERVE_NEXT(voi d *pointer, DBT *dbt, db_recno_t recno,
void *ddest, size_t dlen);

Reserves space for a record number / data pair in a bulk buffer.
Parameters

pointer

The pointer parameter is a variable that must have been initialized by a call to
DB_MULTIPLE_RECNO_WRITE_INIT.

recno
The record number to be copied into the bulk buffer.
This parameter is set to 0 if the data item does not fit in the buffer.
ddest
The ddest parameter is set to the location reserved in the bulk buffer for the data item.
This parameter is set to NULL if the data item does not fit in the buffer.
dlen
The number of bytes to be reserved.
Class

DBT

See Also

DBT and Bulk Operations

4/12/2010 DB C API Page 185

Chapter 5. The DB_ENV Handle

The DB_ENV object is the handle for a Berkeley DB environment — a collection including support for
some or all of caching, locking, logging and transaction subsystems, as well as databases and log files.
Methods of the DB_ENV handle are used to configure the environment as well as to operate on subsystems
and databases in the environment.

DB_ENV handles are created using the db_env_create method, and are opened using the DB_ENV->open()
method.

When you are done using your environment, close it using the DB_ENV->close() method. Before closing
your environment, make sure all open database handles are closed first. See the DB->close() method
for more information.

4/12/2010

DB C API Page 186

Database Environments and Related
Methods

Database Environments and Related Methods

Database Environment Operations

Description

DB->get_env()

Return the DB's underlying DB_ENV handle

DB_ENV->close()

Close an environment

db_env_create

Create an environment handle

DB_ENV->dbremove()

Remove a database

DB_ENV->dbrename()

Rename a database

DB_ENV->err()

Error message

DB_ENV->failchk()

Check for thread failure

DB_ENV->fileid_reset()

Reset database file IDs

DB_ENV->get_home()

Return environment's home directory

DB_ENV->get_open_flags()

Return flags with which the environment was
opened

DB_ENV->lsn_reset()

Reset database file LSNs

DB_ENV->open()

Open an environment

DB_ENV->remove()

Remove an environment

DB_ENV->stat_print()

Environment statistics

db_strerror

Error strings

db_version

Return version information

Environment Configuration

DB_ENV->add_data_dir()

add an environment data directory

DB_ENV->set_alloc()

Set local space allocation functions

DB_ENV->set_app_dispatch()

Configure application recovery callback

DB_ENV->set_data_dir(), DB_ENV->get_data_dirs()

Set/get the environment data directory

DB_ENV->set_create_dir(),
DB_ENV->get_create_dir()

add an environment data directory

DB_ENV->set_encrypt(),
DB_ENV->get_encrypt_flags()

Set/get the environment cryptographic key

DB_ENV->set_event_notify()

Set event notification callback

DB_ENV->set_errcall()

Set error message callbacks

DB_ENV->set_errfile(), DB_ENV->get_errfile()

Set/get error message FILE

DB_ENV->set_errpfx(), DB_ENV->get_errpfx()

Set/get error message prefix

DB_ENV->set_feedback()

Set feedback callback

DB_ENV->set_flags(), DB_ENV->get_flags()

Environment configuration

DB_ENV->set_intermediate_dir_mode(),
DB_ENV->get_intermediate_dir_mode()

Set/get intermediate directory creation mode

4/12/2010

DB C API

Page 187

Database Environments and Related
Methods

Database Environment Operations

Description

DB_ENV->set_isalive()

Set thread is-alive callback

DB_ENV->set_msgcall()

Set informational message callback

DB_ENV->set_msgfile(), DB_ENV->get_msgfile()

Set/get informational message FILE

DB_ENV->set_shm_key(), DB_ENV->get_shm_key()

Set/get system memory shared segment ID

DB_ENV->set_thread_count(),
DB_ENV->get_thread_count()

Set/get approximate thread count

DB_ENV->set_thread_id()

Set thread of control ID function

DB_ENV->set_thread_id_string()

Set thread of control ID format function

Set/get lock and transaction timeout

DB_ENV->set_timeout(), DB_ENV->get_timeout()
DB_ENV->set_tmp_dir(), DB_ENV->get_tmp_dir()

Set/get the environment temporary file directory

DB_ENV->set_verbose(), DB_ENV->get_verbose()

Set/get verbose messages

DB_ENV->set_cachesize(), DB_ENV->get_cachesize()

Set/get the environment cache size

4/12/2010

DB C API

Page 188

DB->get_env()

DB->get_env()

#i ncl ude <db. h>

DB_ENV *
DB- >get _env(DB *db);

The DB- >get _env() method returns the handle for the database environment underlying the database.
The DB- >get _env() method may be called at any time during the life of the application.

Class
DB

See Also

Database and Related Methods

4/12/2010 DB C API Page 189

DB_ENV->add_data_dir()

DB_ENV->add_data_dir()

#i ncl ude <db. h>

i nt
DB_ENV->add_dat a_dir (DB_ENV *dbenv, const char *dir);

Add the path of a directory to be used as the location of the access method database files. Paths
specified to the DB->open() function will be searched relative to this path. Paths set using this method
are additive, and specifying more than one will result in each specified directory being searched for
database files.

If no database directories are specified, database files must be nhamed either by absolute paths or
relative to the environment home directory. See Berkeley DB File Naming for more information.

The database environment's data directories may also be configured using the environment's DB_CONFIG
file. The syntax of the entry in that file is a single line with the string "add_data_dir", one or more
whitespace characters, and the directory name.

The DB_ENV->add_data_di r() method configures operations performed using the specified DB_ENV
handle, not all operations performed on the underlying database environment.

The DB_ENV->add_dat a_di r() method may not be called after the DB_ENV->open() method is called.
If the database environment already exists when DB_ENV->open() is called, the information specified
to DB_ENV- >add_dat a_di r () must be consistent with the existing environment or corruption can occur.

The DB_ENV- >add_dat a_di r () method returns a non-zero error value on failure and 0 on success.

Parameters

Errors

Class

dir
The dir parameter is a directory to be used as a location for database files.

When using a Unicode build on Windows (the default), this argument will be interpreted as a UTF-8
string, which is equivalent to ASCII for Latin characters.

The DB_ENV->add_dat a_di r () method may fail and return one of the following non-zero errors:
EINVAL

If the method was called after DB_ENV->open() was called; or if an invalid flag value or parameter was
specified.

DB_ENV

4/12/2010

DB C API Page 190

../../programmer_reference/env_naming.html
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

DB_ENV->add_data_dir()

See Also

Database Environments and Related Methods

4/12/2010 DB C API Page 191

DB_ENV->close()

DB_ENV->close()

#i ncl ude <db. h>

i nt
DB_ENV->cl ose(DB_ENV *dbenv, u_int32_t flags);

The DB_ENV- >cl ose() method closes the Berkeley DB environment, freeing any allocated resources and
closing any underlying subsystems.

The DB_ENV handle should not be closed while any other handle that refers to it is not yet closed; for
example, database environment handles must not be closed while database handles remain open, or
transactions in the environment have not yet been committed or aborted. Specifically, this includes
the DB, DBcursor, DB_TXN, DB_LOGC and DB_MPOOLFILE handles.

Where the environment was initialized with the DB_INIT_LOCK flag, calling DB_ENV- >cl ose() does not
release any locks still held by the closing process, providing functionality for long-lived locks. Processes
that want to have all their locks released can do so by issuing the appropriate DB_ENV->lock_vec() call.

Where the environment was initialized with the DB_INIT_MPOOL flag, calling DB _ENV- >cl ose() implies
calls to DB_MPOOLFILE->close() for any remaining open files in the memory pool that were returned
to this process by calls to DB_MPOOLFILE->open(). It does not imply a call to DB_MPOOLFILE->sync()
for those files.

Where the environment was initialized with the DB_INIT_TXN flag, calling DB_ENV- >cl ose() aborts any
unresolved transactions. Applications should not depend on this behavior for transactions involving
Berkeley DB databases; all such transactions should be explicitly resolved. The problem with depending
on this semantic is that aborting an unresolved transaction involving database operations requires a
database handle. Because the database handles should have been closed before calling DB_ENV- >cl ose(),
it will not be possible to abort the transaction, and recovery will have to be run on the Berkeley DB
environment before further operations are done.

Where log cursors were created using the DB_ENV->log_cursor() method, calling DB_ENV- >cl ose() does
not imply closing those cursors.

In multithreaded applications, only a single thread may call the DB_ENV- >cl ose() method.

After DB_ENV- >cl ose() has been called, regardless of its return, the Berkeley DB environment handle
may not be accessed again.

The DB_ENV- >cl ose() method returns a non-zero error value on failure and 0 on success.
Parameters
flags

The flags parameter is currently unused, and must be set to 0.

4/12/2010 DB C API Page 192

DB_ENV->close()

Class
DB_ENV

See Also

Database Environments and Related Methods

4/12/2010 DB C API Page 193

db_env_create

db_env_create

#i ncl ude <db. h>

i nt
db_env_create(DB_ENV **dbenvp, u_int32_t flags);

The db_env_create() function creates a DB_ENV structure that is the handle for a Berkeley DB
environment. This function allocates memory for the structure, returning a pointer to the structure in
the memory to which dbenvp refers. To release the allocated memory and discard the handle, call
the DB_ENV->close() or DB_ENV->remove() methods.

DB _ENV handles are free-threaded if the DB_THREAD flag is specified to the DB_ENV->open() method
when the environment is opened. The DB_ENV handle should not be closed while any other handle
remains open that is using it as a reference (for example, DB or DB_TXN). Once either the
DB_ENV->close() or DB_ENV->remove() methods are called, the handle may not be accessed again,
regardless of the method's return.

Before the handle may be used, you must open it using the DB_ENV->open() method.

The DB_ENV handle contains a special field, app_pri vat e, which is declared as type voi d *. This field
is provided for the use of the application program. It is initialized to NULL and is not further used by
Berkeley DB in any way.

The db_env_creat e() method returns a non-zero error value on failure and 0 on success.

The flags parameter must be set to 0.

Class
DB_ENV
See Also
Database Environments and Related Methods
4/12/2010 DB C API Page 194

DB_ENV->dbremove()

DB_ENV->dbremove()

#i ncl ude <db. h>

int
DB_ENV- >dbr enove(DB_ENV *dbenv, DB _TXN *txnid,
const char *file, const char *database, u_int32_t flags);

The DB_ENV- >dbr enove() method removes the database specified by the file and database parameters.
If no database is specified, the underlying file represented by file is removed, incidentally removing
all of the databases it contained.

Applications should never remove databases with open DB handles, or in the case of removing a file,
when any database in the file has an open handle.

The DB_ENV- >dbr enove() method returns a non-zero error value on failure and 0 on success.

DB_ENV- >dbr emove() is affected by any database directory specified using the DB_ENV->set_data_dir()
method, or by setting the set _data_dir string in the environment's DB_CONFIG file.

Parameters
database
The database parameter is the database to be removed.
file
The file parameter is the physical file which contains the database(s) to be removed.
txnid

If the operation is part of an application-specified transaction, the txnid parameter is a transaction
handle returned from DB_ENV->txn_begin(); if the operation is part of a Berkeley DB Concurrent Data
Store group, the txnid parameter is a handle returned from DB_ENV->cdsgroup_begin(); otherwise
NULL. If no transaction handle is specified, but the DB_AUTO COW T flag is specified to either this
method or the environment handle, the operation will be implicitly transaction protected.

flags
The flags parameter must be set to 0 or the following value:
« DB AUTO COWM T

Enclose the DB_ENV- >dbr enove() call within a transaction. If the call succeeds, changes made by the
operation will be recoverable. If the call fails, the operation will have made no changes.

Environment Variables

The environment variable DB_HOVE may be used as the path of the database environment home.

4/12/2010 DB C API Page 195

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

DB_ENV->dbremove()

Errors

The DB_ENV- >dbr enove() method may fail and return one of the following non-zero errors:
DB_LOCK_DEADLOCK

A transactional database environment operation was selected to resolve a deadlock.
DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was unable
to grant a lock in the allowed time.

EINVAL

If the method was called before DB_ENV->open() was called; or if an invalid flag value or parameter
was specified.

ENOENT

The file or directory does not exist.

Class
DB_ENV
See Also
Database Environments and Related Methods
4/12/2010 DB C API Page 196

DB_ENV->dbrename()

DB_ENV->dbrename()

#i ncl ude <db. h>

int
DB_ENV- >dbr ename(DB_ENV *dbenv, DB TXN *txnid, const char *file,
const char *database, const char *newnane, u_int32_t flags);

The DB_ENV- >dbr enane() method renames the database specified by the file and database parameters
to newname. If no database is specified, the underlying file represented by file is renamed using the
value supplied to newname, incidentally renaming all of the databases it contained.

Applications should not rename databases that are currently in use. If an underlying file is being renamed
and logging is currently enabled in the database environment, no database in the file may be open
when the DB_ENV- >dbr enane() method is called.

The DB_ENV- >dbr ename() method returns a non-zero error value on failure and 0 on success.

DB_ENV->dbr enane() is affected by any database directory specified using the DB_ENV->set_data_dir()
method, or by setting the set _data_dir string in the environment's DB_CONFIG file.

Parameters

database

The database parameter is the database to be renamed.

file

The file parameter is the physical file which contains the database(s) to be renamed.

When using a Unicode build on Windows (the default), the file argument will be interpreted as a UTF-8
string, which is equivalent to ASCII for Latin characters.

flags
The flags parameter must be set to 0 or the following value:
« DB AUTO COWM T

Enclose the DB_ENV- >dbr enane() call within a transaction. If the call succeeds, changes made by the
operation will be recoverable. If the call fails, the operation will have made no changes.

newname
The newname parameter is the new name of the database or file.
txnid

If the operation is part of an application-specified transaction, the txnid parameter is a transaction
handle returned from DB_ENV->txn_begin(); if the operation is part of a Berkeley DB Concurrent Data

4/12/2010

DB C API Page 197

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

DB_ENV->dbrename()

Store group, the txnid parameter is a handle returned from DB_ENV->cdsgroup_begin(); otherwise
NULL. If no transaction handle is specified, but the DB_AUTO COW T flag is specified to either this
method or the environment handle, the operation will be implicitly transaction protected.

Environment Variables

Errors

The environment variable DB_HOVE may be used as the path of the database environment home.

The DB_ENV- >dbr ename() method may fail and return one of the following non-zero errors:
DB_LOCK_DEADLOCK

A transactional database environment operation was selected to resolve a deadlock.
DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was unable
to grant a lock in the allowed time.

EINVAL

If the method was called before DB_ENV->open() was called; or if an invalid flag value or parameter
was specified.

ENOENT

The file or directory does not exist.

Class
DB_ENV
See Also
Database Environments and Related Methods
4/12/2010 DB C API Page 198

DB_ENV->err()

DB_ENV->err()

#i ncl ude <db. h>

voi d
DB _ENV->err (DB _ENV *dbenv, int error, const char *fnt, ...);

voi d
DB_ENV->errx(DB_ENV *dbenv, const char *fnt, ...);

The DB_ENV->err (), DB _ENV->errx, (), DB->err() and DB->err x() methods provide error-messaging
functionality for applications written using the Berkeley DB library.

The DB->err() and DB_ENV->err() methods constructs an error message consisting of the following
elements:

An optional prefix string

If no error callback function has been set using the DB_ENV->set_errcall() method, any prefix string
specified using the DB_ENV->set_errpfx() method, followed by two separating characters: a colon
and a <space> character.

An optional printf-style message

The supplied message fmt, if non-NULL, in which the ANSI C X3.159-1989 (ANSI C) printf function
specifies how subsequent parameters are converted for output.

A separator
Two separating characters: a colon and a <space> character.
A standard error string

The standard system or Berkeley DB library error string associated with the error value, as returned
by the db_strerror method.

This constructed error message is then handled as follows:

If an error callback function has been set (see DB->set_errcall() and DB_ENV->set_errcall()), that
function is called with two parameters: any prefix string specified (see DB->set_errpfx() and
DB_ENV->set_errpfx()) and the error message.

If a C library FILE * has been set (see DB->set_errfile() and DB_ENV->set_errfile()), the error message
is written to that output stream.

If none of these output options have been configured, the error message is written to stderr, the
standard error output stream.

4/12/2010

DB C API Page 199

DB_ENV->err()

Parameters
error

The error parameter is the error value for which the DB_ENV->err () and DB->err() methods will display
a explanatory string.

fmt

The fmt parameter is an optional printf-style message to display.
Class

DB_ENV
See Also

Database Environments and Related Methods

4/12/2010 DB C API Page 200

DB_ENV->failchk()

DB_ENV->failchk()

#i ncl ude <db. h>

i nt
DB_ENV->f ai | chk(DB_ENV *dbenv, u_int32_t flags);

The DB_ENV->fai | chk() method checks for threads of control (either a true thread or a process) that
have exited while manipulating Berkeley DB library data structures, while holding a logical database
lock, or with an unresolved transaction (that is, a transaction that was never aborted or committed).
For more information, see Architecting Data Store and Concurrent Data Store applications, and
Architecting Transactional Data Store applications, both in the Berkeley DB Programmer’s Reference
Guide.

The DB_ENV->fai | chk() method is based on the thread_id and i s_al i ve functions specified to the
DB_ENV->set_thread_id() and DB_ENV->set_isalive() methods. Applications calling the DB_ENV- >f ai | chk()
method must have already called the DB_ENV->set_isalive() method, on the same DB_ENV, and must
have configured their database environment using the DB_ENV->set_thread_count() method.

If DB_ENV->f ai | chk() determines a thread of control exited while holding database read locks, it will
release those locks. If DB_ENV->f ai | chk() determines a thread of control exited with an unresolved
transaction, the transaction will be aborted. In either of these cases, DB_ENV- >f ai | chk() will return O
and the application may continue to use the database environment.

In either of these cases, the DB_ENV- >f ai | chk() method will also report the process and thread IDs
associated with any released locks or aborted transactions. The information is printed to a specified
output channel (see the DB_ENV->set_msgfile() method for more information), or passed to an application
callback function (see the DB_ENV->set_msgcall() method for more information).

If DB_ENV- >f ai | chk() determines a thread of control has exited such that database environment recovery
is required, it will return DB_RUNRECOVERY. In this case, the application should not continue to use
the database environment. For a further description as to the actions the application should take when
this failure occurs, see Handling failure in Data Store and Concurrent Data Store applications, and
Handling failure in Transactional Data Store applications, both in the Berkeley DB Programmer’s
Reference Guide.

In multiprocess applications, it is recommended that the DB_ENV handle used to invoke the
DB_ENV- >f ai | chk() method not be shared and therefore not free-threaded.

The DB_ENV- >f ai | chk() method may not be called by the application before the DB_ENV->open() method
is called.

The DB_ENV- >f ai | chk() method returns a non-zero error value on failure and 0 on success.
Parameters
flags

The flags parameter is currently unused, and must be set to 0.

4/12/2010 DB C API Page 201

../../programmer_reference/cam_app.html
../../programmer_reference/transapp_app.html
../../programmer_reference/program_errorret.html#program_errorret.DB_RUNRECOVERY
../../programmer_reference/cam_fail.html
../../programmer_reference/transapp_fail.html

DB_ENV->failchk()

Errors
The DB_ENV- >f ai | chk() method may fail and return one of the following non-zero errors:
EINVAL
An invalid flag value or parameter was specified.
Class
DB_ENV
See Also

Database Environments and Related Methods

4/12/2010 DB C API Page 202

DB_ENV->fileid_reset()

DB_ENV->fileid_reset()

#i ncl ude <db. h>

i nt
DB ENV->fileid_reset (DB _ENV *dbenv, const char *file, u_int32_t flags);

The DB_ENV->fil eid_reset () method allows database files to be copied, and then the copy used in the
same database environment as the original.

All databases contain an ID string used to identify the database in the database environment cache. If
a physical database file is copied, and used in the same environment as another file with the same ID
strings, corruption can occur. The DB_ENV->fil ei d _reset() method creates new ID strings for all of
the databases in the physical file.

The DB_ENV->fil ei d_reset () method modifies the physical file, in-place. Applications should not reset
IDs in files that are currently in use.

The DB_ENV->fileid reset() method may be called at any time during the life of the application.
The DB_ENV->filei d _reset() method returns a non-zero error value on failure and 0 on success.
Parameters
file
The name of the physical file in which new file IDs are to be created.
flags
The flags parameter must be set to 0 or the following value:
« DB_ENCRYPT
The file contains encrypted databases.
Errors
The DB_ENV->filei d_reset () method may fail and return one of the following non-zero errors:
EINVAL
An invalid flag value or parameter was specified.
Class
DB_ENV
See Also

Database Environments and Related Methods

4/12/2010 DB C API Page 203

DB_ENV->get_create_dir()

DB_ENV->get_create_dir()

#i ncl ude <db. h>

int
DB _ENV->get create_dir(DB_ENV *dbenv, const char **dirp);

The DB_ENV->get create_dir() method returns a pointer to the name of the directory to create
databases in.

The DB_ENV->get create _dir() method may be called at any time during the life of the application.

The DB_ENV->get create_dir() method returns a non-zero error value on failure and 0 on success.
Parameters

dirp

The DB_ENV->get _create_di r() method returns a ponter to the name of the directory in dirp.
Class

DB_ENV
See Also

Database Environments and Related Methods

4/12/2010 DB C API Page 204

DB_ENV->get_data_dirs()

DB_ENV->get_data_dirs()

#i ncl ude <db. h>

int
DB _ENV->get data_dirs(DB_ENV *dbenv, const char ***dirpp);

The DB_ENV->get data_di rs() method returns the NULL-terminated array of directories.
The DB_ENV->get data_di rs() method may be called at any time during the life of the application.

The DB_ENV->get data_dirs() method returns a non-zero error value on failure and 0 on success.

Parameters
dirpp
The DB_ENV- >get _dat a_di rs() method returns a reference to the NULL-terminated array of directories
in dirpp.
Class
DB_ENV
See Also

Database Environments and Related Methods

4/12/2010 DB C API Page 205

DB_ENV->get_encrypt_flags()

DB_ENV->get_encrypt_flags()

#i ncl ude <db. h>

int
DB_ENV->get _encrypt flags(DB_ENV *dbenv, u_int32_t *flagsp);

The DB_ENV->get _encrypt flags() method returns the encryption flags.
The DB_ENV- >get _encrypt _fl ags() method may be called at any time during the life of the application.
The DB_ENV- >get _encrypt _fl ags() method returns a non-zero error value on failure and 0 on success.
Parameters
flagsp
The DB_ENV- >get _encrypt _flags() method returns the encryption flags in flagsp.
Class
DB_ENV
See Also

Database Environments and Related Methods

4/12/2010 DB C API Page 206

DB_ENV->get_errfile()

DB_ENV->get_errfile()

#i ncl ude <db. h>

voi d
DB _ENV->get errfile(DB_ENV *dbenv, FILE **errfilep);

The DB_ENV->get _errfile() method returns the FILE * used for displaying additional Berkeley DB error
messages. This C library is set using the DB_ENV->set_errfile() method.

The DB_ENV->get _errfile() method may be called at any time during the life of the application.
Parameters

errfilep

The DB_ENV->get _errfil e() method returns the FILE * in errfilep.
Class

DB_ENV
See Also

Database Environments and Related Methods

4/12/2010 DB C API Page 207

DB_ENV->get_errpfx()

DB_ENV->get_errpfx()

#i ncl ude <db. h>

voi d
DB _ENV->get _errpfx(DB_ENV *dbenv, const char **errpfxp);

The DB_ENV->get _errpfx() method returns the error prefix that appears before error messages issued
by Berkeley DB. This error prefix is set using the DB_ENV->set_errpfx() method.

The DB_ENV->get _errpfx() method may be called at any time during the life of the application.
Parameters

errpfxp

The DB_ENV- >get _errpf x() method returns a reference to the error prefix in errpfxp.
Class

DB_ENV
See Also

Database Environments and Related Methods

4/12/2010 DB C API Page 208

DB_ENV->get_flags()

DB_ENV->get_flags()

#i ncl ude <db. h>

int
DB_ENV->get flags(DB_ENV *dbenv, u_int32_t *flagsp);

The DB_ENV->get flags() method returns the configuration flags set for a DB_ENV handle. These flags
are set using the DB_ENV->set_flags() method.

The DB_ENV->get flags() method may be called at any time during the life of the application.
The DB_ENV->get flags() method returns a non-zero error value on failure and 0 on success.
Parameters
flagsp
The DB_ENV->get _flags() method returns the configuration flags in flagsp.
Class
DB_ENV
See Also

Database Environments and Related Methods

4/12/2010 DB C API Page 209

DB_ENV->get_home()

DB_ENV->get_home()

#i ncl ude <db. h>

int
DB_ENV->get _home(DB_ENV *dbenv, const char **honep);

The DB_ENV- >get _home() method returns the database environment home directory. This directory is
normally identified when the DB_ENV->open() method is called.

The DB_ENV->get _home() method may be called at any time during the life of the application.
The DB_ENV- >get _home() method returns a non-zero error value on failure and 0 on success.
Class
DB_ENV
See Also

Database Environments and Related Methods

4/12/2010 DB C API Page 210

DB_ENV->get_intermediate_dir_mode()

DB_ENV->get_intermediate_dir_mode()

#i ncl ude <db. h>

i nt
DB_ENV->get _internedi ate_dir_nmode(DB_ENV *dbenv, const char **nodep);

The DB_ENV->get i nternedi ate_dir_nmode() method returns the intermediate directory permissions.

Intermediate directories are directories needed for recovery. Normally, Berkeley DB does not create
these directories and will do so only if the DB_ENV->set_intermediate_dir_mode() method is called.

The DB_ENV->get internedi ate dir_mde() method may be called at any time during the life of the
application.

The DB_ENV- >get _internedi ate_di r_nmode() method returns a non-zero error value on failure and 0 on
success.

Parameters

modep

The DB_ENV->get i nternedi ate_dir_node() method returns a reference to the intermediate directory
permissions in modep.

Class
DB_ENV
See Also
Database Environments and Related Methods
4/12/2010 DB C API Page 211

DB_ENV->get_msgfile()

DB_ENV->get_msgfile()

#i ncl ude <db. h>

voi d
DB_ENV->get _nsgfil e(DB_ENV *dbenv, FILE **nsgfilep);

The DB_ENV->get _nsgfil e() method returns the FI LE * used for displaying messages. This is set using
the DB_ENV->set_msgfile() method.

The DB_ENV->get _nsgfil e() method may be called at any time during the life of the application.
Parameters

msgfilep

The DB_ENV->get _nsgfil e() method returns the FILE * in msgfilep.
Class

DB_ENV
See Also

Database Environments and Related Methods, DB_ENV->set_msgfile()

4/12/2010 DB C API Page 212

DB_ENV->get_open_flags()

DB_ENV->get_open_flags()

#i ncl ude <db. h>

int
DB_ENV->get _open_flags(DB_ENV *dbenv, u_int32_t *flagsp);

The DB_ENV- >get _open_fl ags() method returns the open method flags originally used to create the
database environment.

The DB_ENV->get _open_fl ags() method may not be called before the DB_ENV- >open() method is called.

The DB_ENV->get _open_flags() method returns a non-zero error value on failure and 0 on success.
Parameters

flagsp

The DB_ENV- >get _open_flags() method returns the open method flags originally used to create the
database environment in flagsp.

Class
DB_ENV
See Also

Database Environments and Related Methods, DB_ENV->open()

4/12/2010 DB C API Page 213

DB_ENV->get_shm_key()

DB_ENV->get_shm_key()

#i ncl ude <db. h>

int
DB_ENV->get _shm key(DB_ENV *dbenv, [ong *shm keyp);

The DB_ENV- >get _shm key() method returns the base segment ID. This is used for Berkeley DB
environment shared memory regions created in system memory on VxWorks or systems supporting
X/0pen-style shared memory interfaces. It may be specified using the DB_ENV->set_shm_key() method.

The DB_ENV- >get _shm key() method may be called at any time during the life of the application.
The DB_ENV->get _shm key() method returns a non-zero error value on failure and 0 on success.
Parameters
shm_keyp
The DB_ENV- >get _shm key() method returns the base segment ID in shm_keyp.
Class
DB_ENV
See Also

Database Environments and Related Methods, DB_ENV->set_shm_key()

4/12/2010 DB C API Page 214

DB_ENV->get_thread_count()

DB_ENV->get_thread_count()

#i ncl ude <db. h>

i nt
DB_ENV->get _thread_count (DB_ENV *dbenv, u_int32_t *countp);

The DB_ENV->get thread_count () method returns the thread count as set by the
DB_ENV->set_thread_count() method.

The DB_ENV- >get thread _count () method may be called at any time during the life of the application.
The DB_ENV->get thread_count () method returns a non-zero error value on failure and 0 on success.
Parameters
countp
The DB_ENV- >get _t hread_count () method returns the thread count in countp.
Class
DB_ENV
See Also

Database Environments and Related Methods, DB_ENV->set_thread_count()

4/12/2010 DB C API Page 215

DB_ENV->get_timeout()

DB_ENV->get_timeout()

#i ncl ude <db. h>

i nt
DB_ENV->get _timeout (DB_ENV *dbenv, db_tinmeout t *timeoutp,
u_int32_t flag);

The DB_ENV->get timeout () method returns a value, in microseconds, representing either lock or
transaction timeouts. These values are set using the DB_ENV->set_timeout() method.

The DB_ENV->get timeout () method may be called at any time during the life of the application.
The DB_ENV->get timeout () method returns a non-zero error value on failure and 0 on success.
Parameters
flag
The flags parameter must be set to one of the following values:
« DB_SET_LOCK_TI MEQUT
Return the timeout value for locks in this database environment.
« DB_SET_TXN_TI MEQUT
Return the timeout value for transactions in this database environment.
timeoutp

The timeoutp parameter references memory into which the timeout value of the specified flag parameter

is copied.
Class

DB_ENV
See Also

Database Environments and Related Methods, DB_ENV->set_timeout()

4/12/2010 DB C API Page 216

DB_ENV->get_tmp_dir()

DB_ENV->get_tmp_dir()

#i ncl ude <db. h>

int
DB_ENV->get tnp_dir(DB_ENV *dbenv, const char **dirp);

The DB_ENV->get tnp_dir() method returns the database environment temporary file directory.

The DB_ENV- >get _tnp_di r () method may be called at any time during the life of the application.

The DB_ENV- >get _t np_di r () method returns a non-zero error value on failure and 0 on success.
Parameters

dirp

The DB_ENV- >get _tnp_dir() method returns a reference to the database environment temporary file
directory in dirp.

Class
DB_ENV
See Also

Database Environments and Related Methods, DB_ENV->set_tmp_dir()

4/12/2010 DB C API Page 217

DB_ENV->get_verbose()

DB_ENV->get_verbose()

#i ncl ude <db. h>

i nt
DB_ENV->get verbose(DB ENV *dbenv, u_int32_t which, int *onoffp);

The DB_ENV- >get _verbose() method returns whether the specified which parameter is currently set
or not. These parameters are set using the DB_ENV->set_verbose() method.

The DB_ENV- >get verbose() method may be called at any time during the life of the application.

The DB_ENV->get verbose() method returns a non-zero error value on failure and 0 on success.

Parameters

which

The which parameter is the message value for which configuration is being checked. Must be set to
one of the following values:

« DB_VERB_DEADLOCK

Display additional information when doing deadlock detection.
DB_VERB_FI LEOPS

Display additional information when performing filesystem operations such as open, close or rename.
May not be available on all platforms.

DB_VERB_FI LEOPS_ALL

Display additional information when performing all filesystem operations, including read and write.
May not be available on all platforms.

DB_VERB_RECOVERY
Display additional information when performing recovery.
DB_VERB_REG STER

Display additional information concerning support for the DB_REGISTER flag to the DB_ENV->open()
method.

DB_VERB_REPLI CATI ON

Display all detailed information about replication. This includes the information displayed by all of
the other DB_VERB_REP_* and DB_VERB_REPMGR_* values.

DB_VERB_REP_ELECT

Display detailed information about replication elections.

4/12/2010

DB C API Page 218

DB_ENV->get_verbose()

« DB VERB REP_LEASE
Display detailed information about replication master leases.
» DB VERB REP_M SC

Display detailed information about general replication processing not covered by the other
DB_VERB_REP_* values.

« DB_VERB_REP_MBGS

Display detailed information about replication message processing.
« DB VERB_REP_SYNC

Display detailed information about replication client synchronization.
« DB_VERB_REPMGR_CONNFAI L

Display detailed information about Replication Manager connection failures.
« DB VERB_REPMGR M SC

Display detailed information about general Replication Manager processing.
« DB_VERB WAl TSFOR

Display the waits-for table when doing deadlock detection.
onoffp

The onoffp parameter references memory into which the configuration of the specified which parameter
is copied.

Class
DB_ENV
See Also
Database Environments and Related Methods
4/12/2010 DB C API Page 219

DB_ENV->lsn_reset()

DB_ENV->Isn_reset()

#i ncl ude <db. h>

i nt
DB_ENV- >l sn_reset (DB_ENV *dbenv, const char *file, u_int32_t flags);

The DB_ENV->| sn_reset () method allows database files to be moved from one transactional database
environment to another.

Database pages in transactional database environments contain references to the environment's log
files (that is, log sequence numbers, or LSNs). Copying or moving a database file from one database
environment to another, and then modifying it, can result in data corruption if the LSNs are not first
cleared.

Note that LSNs should be reset before moving or copying the database file into a new database
environment, rather than moving or copying the database file and then resetting the LSNs. Berkeley
DB has consistency checks that may be triggered if an application calls DB_ENV->| sn_reset () on a
database in a new environment when the database LSNs still reflect the old environment.

The DB_ENV- >l sn_reset () method modifies the physical file, in-place. Applications should not reset
LSNs in files that are currently in use.

The DB_ENV- >l sn_reset () method may be called at any time during the life of the application.

The DB_ENV- >l sn_reset () method returns a non-zero error value on failure and 0 on success.

Parameters

Errors

file

The name of the physical file in which the LSNs are to be cleared.
flags

The flags parameter must be set to 0 or the following value:

« DB_ENCRYPT

The file contains encrypted databases.

The DB_ENV->| sn_reset () method may fail and return one of the following non-zero errors:
EINVAL

An invalid flag value or parameter was specified.

4/12/2010

DB C API Page 220

DB_ENV->lsn_reset()

Class
DB_ENV

See Also

Database Environments and Related Methods

4/12/2010 DB C API Page 221

DB_ENV->open()

DB_ENV->open()

#i nclude <db. h>
i nt
DB_ENV- >open(DB_ENV *dbenv, char *db_home, u_int32_t flags, int node);

The DB_ENV- >open() method opens a Berkeley DB environment. It provides a structure for creating a
consistent environment for processes using one or more of the features of Berkeley DB.

The DB_ENV- >open() method method returns a non-zero error value on failure and 0 on success. If
DB_ENV- >open() fails, the DB_ENV->close() method must be called to discard the DB_ENV handle.

Parameters

db_home

The db_home parameter is the database environment's home directory. For more information on
db_home, and filename resolution in general, see Berkeley DB File Naming. The environment variable
DB_HOME may be used as the path of the database home, as described in Berkeley DB File Naming.

When using a Unicode build on Windows (the default), the db_home argument will be interpreted as
a UTF-8 string, which is equivalent to ASCII for Latin characters.

flags

The flags parameter specifies the subsystems that are initialized and how the application’s environment
affects Berkeley DB file naming, among other things. The flags parameter must be set to 0 or by bitwise
inclusively OR'ing together one or more of the values described in this section.

Because there are a large number of flags that can be specified, they have been grouped together by
functionality. The first group of flags indicates which of the Berkeley DB subsystems should be initialized.

The choice of subsystems initialized for a Berkeley DB database environment is specified by the thread
of controlinitially creating the environment. Any subsequent thread of control joining the environment
will automatically be configured to use the same subsystems as were created in the environment (unless
the thread of control requests a subsystem not available in the environment, which will fail). Applications
joining an environment, able to adapt to whatever subsystems have been configured in the environment,
should open the environment without specifying any subsystem flags. Applications joining an
environment, requiring specific subsystems from their environments, should open the environment
specifying those specific subsystem flags.

« DB_INIT_CDB

Initialize locking for the Berkeley DB Concurrent Data Store product. In this mode, Berkeley DB
provides multiple reader/single writer access. The only other subsystem that should be specified
with the DB | NI T_CDB flag is DB_I NI T_MPOCL.

« DB_INIT_LOK

4/12/2010

DB C API Page 222

../../programmer_reference/env_naming.html
../../programmer_reference/env_naming.html
../../programmer_reference/cam.html#cam_intro

DB_ENV->open()

Initialize the locking subsystem. This subsystem should be used when multiple processes or threads
are going to be reading and writing a Berkeley DB database, so that they do not interfere with each
other. If all threads are accessing the database(s) read-only, locking is unnecessary. When the
DB_INIT_LOCK flag is specified, it is usually necessary to run a deadlock detector, as well. See
db_deadlock and DB_ENV->lock_detect() for more information.

« DBINIT_LOG

Initialize the logging subsystem. This subsystem should be used when recovery from application or
system failure is necessary. If the log region is being created and log files are already present, the
log files are reviewed; subsequent log writes are appended to the end of the log, rather than
overwriting current log entries.

« DB_INIT_MPOOL

Initialize the shared memory buffer pool subsystem. This subsystem should be used whenever an
application is using any Berkeley DB access method.

« DB_INIT_REP

Initialize the replication subsystem. This subsystem should be used whenever an application plans
on using replication. The DB | NI T_REP flag requires the DB INIT_TXNand DB | NI T_LOCK flags also be
configured.

« DB_INIT_TXN

Initialize the transaction subsystem. This subsystem should be used when recovery and atomicity of
multiple operations are important. The DB I NI T_TXN flag implies the DB I NI T_LGOG flag.

The second group of flags govern what recovery, if any, is performed when the environment is initialized:
« DB_RECOVER

Run normal recovery on this environment before opening it for normal use. If this flag is set, the
DB_CREATE and DB_I NIl T_TXNflags must also be set, because the regions will be removed and re-created,
and transactions are required for application recovery.

« DB_RECOVER FATAL

Run catastrophic recovery on this environment before opening it for normal use. If this flag is set,
the DB_CREATE and DB_| Nl T_TXN flags must also be set, because the regions will be removed and
re-created, and transactions are required for application recovery.

A standard part of the recovery process is to remove the existing Berkeley DB environment and create
a new one in which to perform recovery. If the thread of control performing recovery does not specify
the correct region initialization information (for example, the correct memory pool cache size), the
result can be an application running in an environment with incorrect cache and other subsystem sizes.
For this reason, the thread of control performing recovery should specify correct configuration
information before calling the DB_ENV- >open() method; or it should remove the environment after
recovery is completed, leaving creation of the correctly sized environment to a subsequent call to the
DB_ENV- >open() method.

4/12/2010

DB C API Page 223

DB_ENV->open()

All Berkeley DB recovery processing must be single-threaded; that is, only a single thread of control
may perform recovery or access a Berkeley DB environment while recovery is being performed. Because
it is not an error to specify DB_RECOVER for an environment for which no recovery is required, it is
reasonable programming practice for the thread of control responsible for performing recovery and
creating the environment to always specify the DB_CREATE and DB_RECOVER flags during startup.

The third group of flags govern file-naming extensions in the environment:
» DB_USE ENVI RON

The Berkeley DB process’ environment may be permitted to specify information to be used when
naming files; see Berkeley DB File Naming. Because permitting users to specify which files are used
can create security problems, environment information will be used in file naming for all users only
if the DB_USE ENVI RON flag is set.

« DB_USE_ENVI RON_ROOT

The Berkeley DB process’ environment may be permitted to specify information to be used when
naming files; see Berkeley DB File Naming. Because permitting users to specify which files are used
can create security problems, if the DB_USE ENVI RON_ROOCT flag is set, environment information will
be used in file naming only for users with appropriate permissions (for example, users with a user-I1D
of 0 on UNI X systems).

Finally, there are a few additional unrelated flags:
« DB_CREATE
Cause Berkeley DB subsystems to create any underlying files, as necessary.
» DB_LOCKDOWN
Lock shared Berkeley DB environment files and memory-mapped databases into memory.
« DB FAI LCHK

Internally call the DB_ENV->failchk() method as part of opening the environment. When DB_FAI LCHK
is specified, a check is made to ensure all DB_ENV- >f ai | chk() prerequisites are meet.

If the DB_FAI LCHK flag is used in conjunction with the DB _REGQ STER flag, then a check will be made
to see if the environment needs recovery. If recovery is needed, a call will be made to the
DB_ENV->f ai | chk() method to release any database reads locks held by the thread of control that
exited and, if needed, to abort the unresolved transaction. If DB_ENV->f ai | chk() determines
environment recovery is still required, the recovery actions for DB_REG STER will be followed.

If the DB_FAI LCHK flag is not used in conjunction with the DB_REGQ STER flag, then make an internal
call to DB_ENv->fai | chk() as the last step of opening the environment. If DB_ENV- >f ai | chk()
determines database environment recovery is required, DB_RUNRECOVERY will be returned.

» DB_PRI VATE

4/12/2010

DB C API Page 224

../../programmer_reference/env_naming.html
../../programmer_reference/env_naming.html
../../programmer_reference/program_errorret.html#program_errorret.DB_RUNRECOVERY

DB_ENV->open()

Allocate region memory from the heap instead of from memory backed by the filesystem or system
shared memory.

This flag implies the environment will only be accessed by a single process (although that process
may be multithreaded). This flag has two effects on the Berkeley DB environment. First, all underlying
data structures are allocated from per-process memory instead of from shared memory that is
accessible to more than a single process. Second, mutexes are only configured to work between
threads.

This flag should not be specified if more than a single process is accessing the environment because
it is likely to cause database corruption and unpredictable behavior. For example, if both a server
application and Berkeley DB utilities (for example, db_archive, db_checkpoint or db_stat) are expected
to access the environment, the DB _PRI VATE flag should not be specified.

See Shared Memory Regions for more information.
« DB REG STER

Check to see if recovery needs to be performed before opening the database environment. (For this
check to be accurate, all processes using the environment must specify DB_REG STER when opening
the environment.) If recovery needs to be performed for any reason (including the initial use of the
DB _REG STER flag), and DB_RECOVER is also specified, recovery will be performed and the open will
proceed normally. If recovery needs to be performed and DB_RECOVER is not specified,
DB_RUNRECOVERY will be returned. If recovery does not need to be performed, the DB_RECOVER flag
will be ignored. See Architecting Transactional Data Store applications for more information.

« DB_SYSTEM MEM

Allocate region memory from system shared memory instead of from heap memory or memory backed
by the filesystem.

See Shared Memory Regions for more information.
« DB_THREAD

Cause the DB_ENV handle returned by DB_ENV- >open() to be free-threaded; that is, concurrently
usable by multiple threads in the address space. The DB_THREAD flag should be specified if the
DB_ENV handle will be concurrently used by more than one thread in the process, or if any DB handles
opened in the scope of the DB_ENV handle will be concurrently used by more than one thread in the
process.

This flag is required when using the Replication Manager.
mode
On Windows systems, the mode parameter is ignored.

On UNIX systems or in IEEE/ANSI Std 1003.1 (POSIX) environments, files created by Berkeley DB are

created with mode mode (as described in chmod(2)) and modified by the process' umask value at the
time of creation (see umask(2)). Created files are owned by the process owner; the group ownership
of created files is based on the system and directory defaults, and is not further specified by Berkeley

4/12/2010

DB C API Page 225

../../programmer_reference/env_region.html
../../programmer_reference/program_errorret.html#program_errorret.DB_RUNRECOVERY
../../programmer_reference/transapp_app.html
../../programmer_reference/env_region.html

DB_ENV->open()

Errors

DB. System shared memory segments created by Berkeley DB are created with mode mode, unmodified
by the process’ umask value. If mode is 0, Berkeley DB will use a default mode of readable and writable
by both owner and group.

The DB_ENV- >open() method may fail and return one of the following non-zero errors:
DB_RUNRECOVERY

Either the DB_REG STER flag was specified, a failure occurred, and no recovery flag was specified, or
the DB_FAI LCHK flag was specified and recovery was deemed necessary.

DB_VERSION_MISMATCH

The version of the Berkeley DB library doesn't match the version that created the database environment.
EAGAIN

The shared memory region was locked and (repeatedly) unavailable.

EINVAL

If the DB_THREAD flag was specified and fast mutexes are not available for this architecture; The DB_HOME
or TWPDI R environment variables were set, but empty; An incorrectly formatted NAME VALUE entry or
line was found; or if an invalid flag value or parameter was specified.

ENOSPC

HP-UX only: Due to the constraints of the PA-RISC memory architecture, HP-UX does not allow a process
to map a file into its address space multiple times. For this reason, each Berkeley DB environment may
be opened only once by a process on HP-UX; that is, calls to DB_ENV- >open() will fail if the specified
Berkeley DB environment has been opened and not subsequently closed.

ENOENT

The file or directory does not exist.

Class
DB_ENV
See Also
Database Environments and Related Methods
4/12/2010 DB C API Page 226

DB_ENV->remove()

DB_ENV->remove()
#i ncl ude <db. h>

i nt
DB_ENV->remove(DB_ENV *dbenv, char *db_home, u_int32_t flags);

The DB_ENV- >renpve() method destroys a Berkeley DB environment if it is not currently in use. The
environment regions, including any backing files, are removed. Any log or database files and the
environment directory are not removed.

If there are processes that have called DB_ENV->open() without calling DB_ENV->close() (that is, there
are processes currently using the environment), DB_ENV- >r enove() will fail without further action unless
the DB_FORCE flag is set, in which case DB_ENV- >r enove() will attempt to remove the environment,
regardless of any processes still using it.

The result of attempting to forcibly destroy the environment when it is in use is unspecified. Processes
using an environment often maintain open file descriptors for shared regions within it. On UNIX systems,
the environment removal will usually succeed, and processes that have already joined the region will
continue to run in that region without change. However, processes attempting to join the environment
will either fail or create new regions. On other systems in which the unlink(2) system call will fail if
any process has an open file descriptor for the file (for example Windows/NT), the region removal will
fail.

Calling DB_ENV->renove() should not be necessary for most applications because the Berkeley DB
environment is cleaned up as part of normal database recovery procedures. However, applications may
want to call DB_ENV->renove() as part of application shut down to free up system resources. For
example, if the DB_SYSTEM_MEM flag was specified to DB_ENV->open(), it may be useful to call
DB_ENV- >renove() in order to release system shared memory segments that have been allocated. Or,
on architectures in which mutexes require allocation of underlying system resources, it may be useful
to call DB_ENv->renove() in order to release those resources. Alternatively, if recovery is not required
because no database state is maintained across failures, and no system resources need to be released,
it is possible to clean up an environment by simply removing all the Berkeley DB files in the database
environment's directories.

In multithreaded applications, only a single thread may call the DB_ENV- >r enove() method.

A DB_ENV handle that has already been used to open an environment should not be used to call the
DB_ENV- >renpve() method; a new DB_ENV handle should be created for that purpose.

After DB_ENV- >renove() has been called, regardless of its return, the Berkeley DB environment handle
may not be accessed again.

The DB_ENV- >remove() method returns a non-zero error value on failure and 0 on success.
Parameters
db_home

The db_home parameter names the database environment to be removed.

4/12/2010 DB C API Page 227

DB_ENV->remove()

When using a Unicode build on Windows (the default), the db_home argument will be interpreted as
a UTF-8 string, which is equivalent to ASCII for Latin characters.

flags

The flags parameter must be set to 0 or by bitwise inclusively OR'ing together one or more of the
following values:

» DB _FORCE

If set, the environment is removed, regardless of any processes that may still using it, and no locks
are acquired during this process. (Generally, this flag is specified only when applications were unable
to shut down cleanly, and there is a risk that an application may have died holding a Berkeley DB
lock.)

« DB_USE_ENVI RON

The Berkeley DB process’ environment may be permitted to specify information to be used when
naming files; see Berkeley DB File Naming. Because permitting users to specify which files are used
can create security problems, environment information will be used in file naming for all users only
if the DB_USE ENVI RON flag is set.

« DB_USE_ENVI RON_ROOT

The Berkeley DB process’ environment may be permitted to specify information to be used when
naming files; see Berkeley DB File Naming. Because permitting users to specify which files are used
can create security problems, if the DB_USE_ENVI RON_ROOT flag is set, environment information will
be used in file naming only for users with appropriate permissions (for example, users with a user-1D
of 0 on UNI X systems).

Errors
The DB_ENV- >renove() method may fail and return one of the following non-zero errors:
EBUSY
The shared memory region was in use and the force flag was not set.
Class
DB_ENV
See Also

Database Environments and Related Methods

4/12/2010 DB C API Page 228

../../programmer_reference/env_naming.html
../../programmer_reference/env_naming.html

DB_ENV->set_alloc()

DB_ENV->set_alloc()

#i ncl ude <db. h>

int

DB_ENV->set _al | oc(DB_ENV *dbenv,
void *(*app_mal |l oc)(size_t),
void *(*app_realloc)(void *, size_t),
void (*app_free)(void *));

Set the allocation functions used by the DB_ENV and DB methods to allocate or free memory owned
by the application.

There are a number of interfaces in Berkeley DB where memory is allocated by the library and then
given to the application. For example, the DB_DBT_MALLOC flag, when specified in the DBT object,
will cause the DB methods to allocate and reallocate memory which then becomes the responsibility
of the calling application. Other examples are the Berkeley DB interfaces which return statistical
information to the application: DB->stat(), DB_ENV->lock_stat(), DB_ENV->log_archive(),
DB_ENV->log_stat(), DB_ENV->memp_stat(), and DB_ENV->txn_stat(). There is one method in Berkeley
DB where memory is allocated by the application and then given to the library: the callback specified
to DB->associate().

On systems in which there may be multiple library versions of the standard allocation routines (notably
Windows NT), transferring memory between the library and the application will fail because the Berkeley
DB library allocates memory from a different heap than the application uses to free it. To avoid this
problem, the DB_ENV- >set _al | oc() and DB->set_alloc() methods can be used to pass Berkeley DB
references to the application’s allocation routines.

It is not an error to specify only one or two of the possible allocation function parameters to these
interfaces; however, in that case the specified interfaces must be compatible with the standard library
interfaces, as they will be used together. The functions specified must match the calling conventions
of the ANSI C X3.159-1989 (ANSI C) library routines of the same name.

The DB_ENV->set _al | oc() method configures operations performed using the specified DB_ENV handle,
not all operations performed on the underlying database environment.

The DB_ENV->set _al | oc() method may not be called after the DB_ENV->open() method is called.

The DB_ENV->set _al | oc() method returns a non-zero error value on failure and 0 on success.
Parameters

app_malloc

The app_malloc parameter is the application-specified malloc function.

app_realloc

The app_realloc parameter is the application-specified realloc function.

4/12/2010 DB C API Page 229

DB_ENV->set_alloc()

app_free
The app_free parameter is the application-specified free function.
Errors

The DB_ENV->set _al | oc() method may fail and return one of the following non-zero errors:

EINVAL
If the method was called after DB_ENV->open() was called; or if an invalid flag value or parameter was
specified.
Class
DB_ENV
See Also

Database Environments and Related Methods

4/12/2010 DB C API Page 230

DB_ENV->set_app_dispatch()

DB_ENV->set_app_dispatch()

#i ncl ude <db. h>

int
DB _ENV->set _app_di spat ch(DB_ENV *dbenv,
int (*tx_recover)(DB_ENV *dbenv,
DBT *log_rec, DB LSN *|sn, db_recops op));

Declare a function to be called during transaction abort and recovery to process application-specific
log records.

The DB_ENV- >set _app_di spat ch() method configures operations performed using the specified DB_ENV
handle, not all operations performed on the underlying database environment.

The DB_ENV- >set _app_di spat ch() method may not be called after the DB_ENV->open() method is called.
If the database environment already exists when DB_ENV->open() is called, the information specified
to DB _ENV- >set _app_di spat ch() must be consistent with the existing environment or corruption can
occur.

The DB_ENV->set _app_di spat ch() method returns a non-zero error value on failure and 0 on success.

Parameters

tx_recover

The tx_recover parameter is the application's abort and recovery function. The function takes four
parameters:

« dbenv
The dbenv parameter is the enclosing database environment handle.
e log_rec
The log_rec parameter is a log record.
e Isn
The Isn parameter is a log sequence number.
. op
The op parameter is one of the following values:
« DB_TXN_BACKWARD ROLL

The log is being read backward to determine which transactions have been committed and to abort
those operations that were not; undo the operation described by the log record.

« DB_TXN_FORWARD ROLL

4/12/2010

DB C API Page 231

DB_ENV->set_app_dispatch()

The log is being played forward; redo the operation described by the log record.
« DB_TXN_ABORT

The log is being read backward during a transaction abort; undo the operation described by the
log record.

« DB_TXN_APPLY
The log is being applied on a replica site; redo the operation described by the log record.
« DB TXN PRI NT

The log is being printed for debugging purposes; print the contents of this log record in the desired
format.

The DB_TXN_FORWARD_ROLL and DB_TXN_APPLY operations frequently imply the same actions,
redoing changes that appear in the log record, although if a recovery function is to be used on a
replication client where reads may be taking place concurrently with the processing of incoming
messages, DB_TXN_APPLY operations should also perform appropriate locking. The macro DB_REDO(op)
checks that the operation is one of DB_TXN_FORWARD_ROLL or DB_TXN_APPLY, and should be used
in the recovery code to refer to the conditions under which operations should be redone. Similarly,
the macro DB_UNDO(op) checks if the operation is one of DB_TXN_BACKWARD_ROLL or DB_TXN_ABORT.

The function must return 0 on success and either errno or a value outside of the Berkeley DB error
name space on failure.

Errors

The DB_ENV->set _app_di spat ch() method may fail and return one of the following non-zero errors:

EINVAL
If the method was called after DB_ENV->open() was called; or if an invalid flag value or parameter was
specified.
Class
DB_ENV, DB_TXN
See Also
Transaction Subsystem and Related Methods
4/12/2010 DB C API Page 232

DB_ENV->set_data_dir()

DB_ENV->set_data_dir()

#i ncl ude <db. h>

i nt
DB_ENV->set data_dir(DB_ENV *dbenv, const char *dir);

|:| This interface has been deprecated. You should use DB_ENV->add_data_dir() and
DB_ENV->set_create_dir() instead.

Set the path of a directory to be used as the location of the access method database files. Paths
specified to the DB->open() function will be searched relative to this path. Paths set using this method
are additive, and specifying more than one will result in each specified directory being searched for
database files. If any directories are specified, database files will always be created in the first path
specified.

If no database directories are specified, database files must be nhamed either by absolute paths or
relative to the environment home directory. See Berkeley DB File Naming for more information.

The database environment's data directories may also be configured using the environment's DB_CONFIG
file. The syntax of the entry in that file is a single line with the string "set_data_dir", one or more
whitespace characters, and the directory name.

The DB_ENV->set _data_di r() method configures operations performed using the specified DB_ENV
handle, not all operations performed on the underlying database environment.

The DB_ENV->set _data_di r() method may not be called after the DB_ENV->open() method is called.
If the database environment already exists when DB_ENV->open() is called, the information specified
to DB_ENV->set _data_di r () must be consistent with the existing environment or corruption can occur.

The DB_ENV- >set _dat a_di r () method returns a non-zero error value on failure and 0 on success.

Parameters

Errors

dir
The dir parameter is a directory to be used as a location for database files.

When using a Unicode build on Windows (the default), this argument will be interpreted as a UTF-8
string, which is equivalent to ASCII for Latin characters.

The DB_ENV->set _data_dir () method may fail and return one of the following non-zero errors:
EINVAL

If the method was called after DB_ENV->open() was called; or if an invalid flag value or parameter was
specified.

4/12/2010

DB C API Page 233

../../programmer_reference/env_naming.html
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

DB_ENV->set_data_dir()

Class
DB_ENV

See Also

Database Environments and Related Methods

4/12/2010 DB C API Page 234

DB_ENV->set_create_dir()

DB_ENV->set_create_dir()

#i ncl ude <db. h>

i nt
DB _ENV->set create_dir(DB_ENV *dbenv, const char *dir);

Sets the path of a directory to be used as the location to create the access method database files.
When the DB->open() function is used to create a file it will be created relative to this path.

If no database directories are specified, database files will be created either by absolute paths or
relative to the environment home directory. See Berkeley DB File Naming for more information.

The database environment's create directory may also be configured using the environment's DB_CONFIG
file. The syntax of the entry in that file is a single line with the string "set_create_dir", one or more
whitespace characters, and the directory name.

The DB_ENV->set _create _dir() method configures operations performed using the specified DB_ENV
handle, not all operations performed on the underlying database environment.

The DB_ENV->set create _dir() method may be called at any time.

The DB_ENV->set _create_dir() method returns a non-zero error value on failure and 0 on success.

Parameters

Errors

dir

The dir parameter is a directory to be used to create database files. This directory must be one of the
directories specified via a call to DB_ENV->add_data_dir()

When using a Unicode build on Windows (the default), this argument will be interpreted as a UTF-8
string, which is equivalent to ASCII for Latin characters.

The DB_ENV->set _create_di r() method may fail and return one of the following non-zero errors:
EINVAL

If the method was called after DB_ENV->open() was called; or if an invalid flag value or parameter was
specified.

Class
DB_ENV
See Also
Database Environments and Related Methods
4/12/2010 DB C API Page 235

../../programmer_reference/env_naming.html
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

DB_ENV->set_encrypt()

DB_ENV->set_encrypt()

#i ncl ude <db. h>

int
DB_ENV->set _encrypt (DB_ENV *dbenv, const char *passwd, u_int32_t flags);

Set the password used by the Berkeley DB library to perform encryption and decryption.

The DB_ENV- >set _encrypt () method configures a database environment, not only operations performed
using the specified DB_ENV handle.

The DB_ENV- >set _encrypt () method may not be called after the DB_ENV->open() method is called. If
the database environment already exists when DB_ENV->open() is called, the information specified to
DB _ENV->set _encrypt () must be consistent with the existing environment or an error will be returned.

The DB_ENV->set _encrypt () method returns a non-zero error value on failure and 0 on success.

Parameters

Errors

Class

flags
The flags parameter must be set to 0 or the following value:
« DB_ENCRYPT_AES

Use the Rijndael/AES (also known as the Advanced Encryption Standard and Federal Information
Processing Standard (FIPS) 197) algorithm for encryption or decryption.

passwd

The passwd parameter is the password used to perform encryption and decryption.

The DB_ENV- >set _encrypt () method may fail and return one of the following non-zero errors:
EINVAL

If the method was called after DB_ENV->open() was called; or if an invalid flag value or parameter was
specified.

EOPNOTSUPP

Cryptography is not available in this Berkeley DB release.

DB_ENV

4/12/2010

DB C API Page 236

DB_ENV->set_encrypt()

See Also

Database Environments and Related Methods

4/12/2010 DB C API Page 237

DB_ENV->set_event_notify()

DB_ENV->set_event_notify()

#i ncl ude <db. h>

i nt

DB _ENV->set _event notify(DB_ENV *dbenv,
void (*db_event fcn)(DB_ENV *dbenv, u_int32_t event,
void *event info));

The DB_ENV->set _event _notify() method configures a callback function which is called to notify the
process of specific Berkeley DB events.

|:| Berkeley DB is not re-entrant. Callback functions should not attempt to make library calls (for
example, to release locks or close open handles). Re-entering Berkeley DB is not guaranteed to
work correctly, and the results are undefined.

The DB_ENV->set _event notify() method configures operations performed using the specified DB_ENV
handle, not all operations performed on the underlying database environment.

The DB_ENV->set _event _notify() method may be called at any time during the life of the application.

The DB_ENV->set _event notify() method returns a non-zero error value on failure and 0 on success.

Parameters

db_event_fcn

The db_event_fcn parameter is the application’s event notification function. The function takes three
parameters:

« dbenv

The dbenv parameter is the enclosing database environment handle.
» event

The event parameter is one of the following values:

« DB_EVENT PANIC

Errors can occur in the Berkeley DB library where the only solution is to shut down the application
and run recovery (for example, if Berkeley DB is unable to allocate heap memory). In such cases,
the Berkeley DB methods will return DB_RUNRECOVERY. It is often easier to simply exit the
application when such errors occur rather than gracefully return up the stack.

When event is set to DB_EVENT_PANIC, the database environment has failed. All threads of control
in the database environment should exit the environment, and recovery should be run.

« DB_EVENT_REG ALIVE

4/12/2010

DB C API Page 238

../../programmer_reference/program_errorret.html#program_errorret.DB_RUNRECOVERY

DB_ENV->set_event_notify()

Recovery is needed in an environment where the DB_REGISTER flag was specified on the
DB_ENV->open() method and there is a process attached to the environment. The callback function
is triggered once for each process attached.

The event_info parameter points to a pid_t value containing the process identifier (pid) of the
process the Berkeley DB library detects is attached to the environment.

DB_EVENT_REG PANI C

Recovery is needed in an environment where the DB_REGISTER flag was specified on the
DB_ENV->open() method. All threads of control in the database environment should exit the
environment.

This event is different than the DB_EVENT_PANI C event because it can only be triggered when
DB_REG STER was specified. It can be used to distinguish between the case when a process dies in
the environment and recovery is initiated versus the case when an error happened (for example,
if Berkeley DB is unable to allocate heap memory)

DB_EVENT_REP_CLI ENT
The local site is now a replication client.
DB_EVENT_REP_ELECTED

The local replication site has just won an election. An application using the Base replication API
should arrange for a call to the DB_ENV->rep_start() method after receiving this event, to
reconfigure the local environment as a replication master.

Replication Manager applications may safely ignore this event. The Replication Manager calls
DB_ENV->rep_start() automatically on behalf of the application when appropriate (resulting in
firing of the DB_EVENT_REP_MASTER event).

DB_EVENT_REP_MASTER

The local site is now the master site of its replication group. It is the application's responsibility
to begin acting as the master environment.

DB_EVENT_REP_NEWWVASTER

The replication group of which this site is a member has just established a new master; the local
site is not the new master. The event_info parameter points to an integer containing the
environment ID of the new master.

DB_EVENT REP_PERM FAI LED

The replication manager did not receive enough acknowledgements (based on the acknowledgement
policy configured with DB_ENV->repmgr_set_ack_policy()) to ensure a transaction's durability
within the replication group. The transaction will be flushed to the master's local disk storage for
durability.

4/12/2010

DB C API Page 239

DB_ENV->set_event_notify()

The DB_EVENT_REP_PERM_FAILED event is provided only to applications configured for the
replication manager.

« DB_EVENT_REP_STARTUPDONE

The client has completed startup synchronization and is now processing live log records received
from the master.

« DB_EVENT VRl TE_FAI LED
A Berkeley DB write to stable storage failed.
e event_info

The event_info parameter may reference memory which contains additional information describing
an event. By default, event_info is NULL; specific events may pass non-NULL values, in which case
the event will also describe the memory's structure.

Class
DB_ENV

See Also

Database Environments and Related Methods

4/12/2010 DB C API Page 240

DB_ENV->set_errcall()

DB_ENV->set_errcall()

#i ncl ude <db. h>

voi d
DB _ENV->set _errcal | (DB_ENV *dbenv, void (*db_errcall_fcn)
(const DB _ENV *dbenv, const char *errpfx, const char *msg));

When an error occurs in the Berkeley DB library, a Berkeley DB error or an error return value is returned
by the interface. In some cases, however, the errno value may be insufficient to completely describe
the cause of the error, especially during initial application debugging.

The DB_ENV->set _errcal | () and DB_ENV->set_errcall() methods are used to enhance the mechanism
for reporting error messages to the application. In some cases, when an error occurs, Berkeley DB will
call db_errcall_fcn with additional error information. It is up to the db_errcall_fcn function to display
the error message in an appropriate manner.

Setting db_errcall_fcn to NULL unconfigures the callback interface.

Alternatively, you can use the DB->set_errfile() or DB->set_errfile() methods to display the additional
information via a C library FI LE *.

This error-logging enhancement does not slow performance or significantly increase application size,
and may be run during normal operation as well as during application debugging.

The DB_ENV->set _errcal | () method configures operations performed using the specified DB_ENV handle,
not all operations performed on the underlying database environment.

The DB_ENV->set _errcal | () method may be called at any time during the life of the application.

|:| Berkeley DB is not re-entrant. Callback functions should not attempt to make library calls (for
example, to release locks or close open handles). Re-entering Berkeley DB is not guaranteed to
work correctly, and the results are undefined.

Parameters

db_errcall_fcn

The db_errcall_fcn parameter is the application-specified error reporting function. The function takes
three parameters:

 dbenv
The dbenv parameter is the enclosing database environment.
e errpfx

The errpfx parameter is the prefix string (as previously set by DB->set_errpfx() or
DB_ENV->set_errpfx()).

on'Bg

4/12/2010

DB C API Page 241

DB_ENV->set_errcall()

The msg parameter is the error message string.
Class
DB_ENV

See Also

Database Environments and Related Methods

4/12/2010 DB C API Page 242

DB_ENV->set_errfile()

DB_ENV->set_errfile()

#i ncl ude <db. h>

voi d
DB ENV->set _errfile(DB_ENV *dbenv, FILE *errfile);

When an error occurs in the Berkeley DB library, a Berkeley DB error or an error return value is returned
by the interface. In some cases, however, the return value may be insufficient to completely describe
the cause of the error especially during initial application debugging.

The DB_ENV->set _errfile() and DB->set_errfile() methods are used to enhance the mechanism for
reporting error messages to the application by setting a C library FILE * to be used for displaying
additional Berkeley DB error messages. In some cases, when an error occurs, Berkeley DB will output
an additional error message to the specified file reference.

Alternatively, you can use the DB_ENV->set_errcall() or DB->set_errcall() methods to capture the
additional error information in a way that does not use C library FILE *'s.

The error message will consist of the prefix string and a colon (":") (if a prefix string was previously
specified using DB->set_errpfx() or DB_ENV->set_errpfx()), an error string, and a trailing <newline>
character.

The default configuration when applications first create DB or DB_ENV handles is as if the
DB->set_errfile() or DB_ENV->set _errfil e() methods were called with the standard error output (stderr)
specified as the FILE * argument. Applications wanting no output at all can turn off this default
configuration by calling the DB->set_errfile() or DB_ENV- >set _errfil e() methods with NULL as the FILE
* argument. Additionally, explicitly configuring the error output channel using any of the following
methods will also turn off this default output for the application:

o DB ENV->set _errfile()
» DB->set_errfile()

o DB_ENV->set_errcall()
o DB->set_errcall()

This error logging enhancement does not slow performance or significantly increase application size,
and may be run during normal operation as well as during application debugging.

The DB _ENV->set _errfile() method configures operations performed using the specified DB_ENV handle,
not all operations performed on the underlying database environment.

The DB_ENV->set _errfile() method may be called at any time during the life of the application.

4/12/2010

DB C API Page 243

DB_ENV->set_errfile()

Parameters
errfile

The errfile parameter is a C library FILE * to be used for displaying additional Berkeley DB error

information.
Class

DB_ENV
See Also

Database Environments and Related Methods

4/12/2010 DB C API Page 244

DB_ENV->set_errpfx()

DB_ENV->set_errpfx()

#i ncl ude <db. h>

voi d
DB_ENV->set _errpfx(DB_ENV *dbenv, const char *errpfx);

Set the prefix string that appears before error messages issued by Berkeley DB.

The DB->set_errpfx() and DB_ENV->set _errpfx() methods do not copy the memory to which the errpfx
parameter refers; rather, they maintain a reference to it. Although this allows applications to modify
the error message prefix at any time (without repeatedly calling the interfaces), it means the memory
must be maintained until the handle is closed.

The DB_ENV- >set _err pf x() method configures operations performed using the specified DB_ENV handle,
not all operations performed on the underlying database environment.

The DB_ENV- >set _errpf x() method may be called at any time during the life of the application.

Parameters
errpfx

The errpfx parameter is the application-specified error prefix for additional error messages.
Class
DB_ENV

See Also

Database Environments and Related Methods

4/12/2010 DB C API Page 245

DB_ENV->set_feedback()

DB_ENV->set_feedback()

#i ncl ude <db. h>

int
DB_ENV->set feedback(DB_ENV *dbenv,
void (*db_feedback fcn) (DB _ENV *dbenv, int opcode, int percent));

Some operations performed by the Berkeley DB library can take non-trivial amounts of time. The

DB _ENV->set feedback() method can be used by applications to monitor progress within these operations.
When an operation is likely to take a long time, Berkeley DB will call the specified callback function
with progress information.

|:| Berkeley DB is not re-entrant. Callback functions should not attempt to make library calls (for
example, to release locks or close open handles). Re-entering Berkeley DB is not guaranteed to
work correctly, and the results are undefined.
It is up to the callback function to display this information in an appropriate manner.

The DB_ENV- >set feedback() method configures operations performed using the specified DB_ENV
handle.

The DB_ENV->set _feedback() method may be called at any time during the life of the application.

The DB_ENV- >set _f eedback() method returns a non-zero error value on failure and 0 on success.

Parameters

db_feedback_fcn

The db_feedback_fcn parameter is the application-specified feedback function called to report Berkeley
DB operation progress. The callback function must take three parameters:

« dbenv
The dbenv parameter is a reference to the enclosing database environment.
e opcode

The opcode parameter is an operation code. The opcode parameter may take on any of the following
values:

+ DB_RECOVER
The environment is being recovered.
* percent

The percent parameter is the percent of the operation that has been completed, specified as an
integer value between 0 and 100.

4/12/2010

DB C API Page 246

DB_ENV->set_feedback()

Class
DB_ENV

See Also

Database Environments and Related Methods

4/12/2010 DB C API Page 247

DB_ENV->set_flags()

DB_ENV->set_flags()

#i ncl ude <db. h>

i nt
DB_ENV->set flags(DB_ENV *dbenv, u_int32_t flags, int onoff);

Configure a database environment.

The database environment's flag values may also be configured using the environment's DB_CONFIG
file. The syntax of the entry in that file is a single line with the string "set_flags", one or more whitespace
characters, and the method flag parameter as a string; for example, "set_flags DB_TXN_NOSYNC".
Because the DB_CONFIG file is read when the database environment is opened, it will silently overrule
configuration done before that time.

The DB_ENV- >set _fl ags() method returns a non-zero error value on failure and 0 on success.

Parameters

flags

The flags parameter must be set by bitwise inclusively OR'ing together one or more of the following
values:

« DB_AUTO COW T

If set, DB handle operations for which no explicit transaction handle was specified, and which modify
databases in the database environment, will be automatically enclosed within a transaction.

Calling DB_ENV->set _flags() with this flag only affects the specified DB_ENV handle (and any other
Berkeley DB handles opened within the scope of that handle). For consistent behavior across the
environment, all DB_ENV handles opened in the environment must either set this flag or the flag
should be specified in the DB_CONFIG configuration file.

This flag may be used to configure Berkeley DB at any time during the life of the application.
- DB CDB ALLDB

If set, Berkeley DB Concurrent Data Store applications will perform locking on an environment-wide
basis rather than on a per-database basis.

Calling DB_ENV->set flags() with the DB_CDB_ALLDB flag only affects the specified DB_ENV handle
(and any other Berkeley DB handles opened within the scope of that handle). For consistent behavior
across the environment, all DB_ENV handles opened in the environment must either set the
DB_CDB_ALLDB flag or the flag should be specified in the DB_CONFIG configuration file.

The DB_CDB_ALLDB flag may be used to configure Berkeley DB only before the DB_ENV->open()
method is called.

« DB DI RECT DB

4/12/2010

DB C API Page 248

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

DB_ENV->set_flags()

Turn off system buffering of Berkeley DB database files to avoid double caching.

Calling DB_ENV->set fl ags() with the DB_DIRECT_DB flag only affects the specified DB_ENV handle
(and any other Berkeley DB handles opened within the scope of that handle). For consistent behavior
across the environment, all DB_ENV handles opened in the environment must either set the
DB_DIRECT_DB flag or the flag should be specified in the DB_CONFIG configuration file.

The DB_DIRECT_DB flag may be used to configure Berkeley DB at any time during the life of the
application.

DB_DSYNC DB

Configure Berkeley DB to flush database writes to the backing disk before returning from the write
system call, rather than flushing database writes explicitly in a separate system call, as necessary.
This is only available on some systems (for example, systems supporting the IEEE/ANSI Std 1003.1
(POSIX) standard O_DSYNC flag, or systems supporting the Windows FILE_FLAG_WRITE_THROUGH
flag). This flag may result in inaccurate file modification times and other file-level information for
Berkeley DB database files. This flag will almost certainly result in a performance decrease on most
systems. This flag is only applicable to certain filesysystems (for example, the Veritas VxFS filesystem),
where the filesystem's support for trickling writes back to stable storage behaves badly (or more
likely, has been misconfigured).

Calling DB_ENV->set _flags() with the DB_DSYNC_DB flag only affects the specified DB_ENV handle
(and any other Berkeley DB handles opened within the scope of that handle). For consistent behavior
across the environment, all DB_ENV handles opened in the environment must either set the
DB_DSYNC_DB flag or the flag should be specified in the DB_CONFIG configuration file.

The DB_DSYNC_DB flag may be used to configure Berkeley DB at any time during the life of the
application.

DB_MULTI VERSI ON

If set, all databases in the environment will be opened as if DB_MULTIVERSION is passed to the
DB->open() method. This flag will be ignored for queue databases for which DB_MULTIVERSION is not
supported.

Calling DB_ENV->set _flags() with the DB_MULTIVERSION flag only affects the specified DB_ENV
handle (and any other Berkeley DB handles opened within the scope of that handle). For consistent
behavior across the environment, all DB_ENV handles opened in the environment must either set the
DB_MULTIVERSION flag or the flag should be specified in the DB_CONFIG configuration file.

The DB_MULTIVERSION flag may be used to configure Berkeley DB at any time during the life of the
application.

DB_NCOLOCKI NG

If set, Berkeley DB will grant all requested mutual exclusion mutexes and database locks without
regard for their actual availability. This functionality should never be used for purposes other than
debugging.

4/12/2010

DB C API Page 249

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

DB_ENV->set_flags()

Calling DB_ENV- >set _flags() with the DB_NOLOCKING flag only affects the specified DB_ENV handle
(and any other Berkeley DB handles opened within the scope of that handle).

The DB_NOLOCKING flag may be used to configure Berkeley DB at any time during the life of the
application.

DB_NOMVAP

If set, Berkeley DB will copy read-only database files into the local cache instead of potentially
mapping them into process memory (see the description of the DB_ENV->set_mp_mmapsize() method
for further information).

Calling DB_ENV->set _flags() with the DB_NOMMAP flag only affects the specified DB_ENV handle
(and any other Berkeley DB handles opened within the scope of that handle). For consistent behavior
across the environment, all DB_ENV handles opened in the environment must either set the
DB_NOMMAP flag or the flag should be specified in the DB_CONFIG configuration file.

The DB_NOMMAP flag may be used to configure Berkeley DB at any time during the life of the
application.

DB_NOPANI C

If set, Berkeley DB will ignore any panic state in the database environment. (Database environments
in a panic state normally refuse all attempts to call Berkeley DB functions, returning
DB_RUNRECOVERY.) This functionality should never be used for purposes other than debugging.

Calling DB_ENV->set _flags() with the DB_NOPANIC flag only affects the specified DB_ENV handle
(and any other Berkeley DB handles opened within the scope of that handle).

The DB_NOPANIC flag may be used to configure Berkeley DB at any time during the life of the
application.

DB_OVERWRI TE

Overwrite files stored in encrypted formats before deleting them. Berkeley DB overwrites files using
alternating 0xff, 0x00 and Oxff byte patterns. For file overwriting to be effective, the underlying file
must be stored on a fixed-block filesystem. Systems with journaling or logging filesystems will require
operating system support and probably modification of the Berkeley DB sources.

Calling DB_ENV->set _flags() with the DB_OVERWRITE flag only affects the specified DB_ENV handle
(and any other Berkeley DB handles opened within the scope of that handle).

The DB_OVERWRITE flag may be used to configure Berkeley DB at any time during the life of the
application.

DB_PANI C_ENVI RONVENT

If set, Berkeley DB will set the panic state for the database environment. (Database environments
in a panic state normally refuse all attempts to call Berkeley DB functions, returning
DB_RUNRECOVERY.) This flag may not be specified using the environment's DB_CONFIG file.

4/12/2010

DB C API Page 250

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/program_errorret.html#program_errorret.DB_RUNRECOVERY
../../programmer_reference/program_errorret.html#program_errorret.DB_RUNRECOVERY
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

DB_ENV->set_flags()

Calling DB_ENV- >set _fl ags() with the DB_PANIC_ENVIRONMENT flag affects the database environment,
including all threads of control accessing the database environment.

The DB_PANIC_ENVIRONMENT flag may be used to configure Berkeley DB only after the DB_ENV->open()
method is called.

DB REG ONINIT

In some applications, the expense of page-faulting the underlying shared memory regions can affect
performance. (For example, if the page-fault occurs while holding a lock, other lock requests can
convoy, and overall throughput may decrease.) If set, Berkeley DB will page-fault shared regions
into memory when initially creating or joining a Berkeley DB environment. In addition, Berkeley DB
will write the shared regions when creating an environment, forcing the underlying virtual memory
and filesystems to instantiate both the necessary memory and the necessary disk space. This can
also avoid out-of-disk space failures later on.

Calling DB_ENv->set _fl ags() with the DB_REGION_INIT flag only affects the specified DB_ENV handle
(and any other Berkeley DB handles opened within the scope of that handle). For consistent behavior
across the environment, all DB_ENV handles opened in the environment must either set the
DB_REGION_INIT flag or the flag should be specified in the DB_CONFIG configuration file.

The DB_REGION_INIT flag may be used to configure Berkeley DB at any time during the life of the
application.

DB_TI ME_NOTGRANTED

If set, database calls timing out based on lock or transaction timeout values will return
DB_LOCK_NOTGRANTED instead of DB_LOCK_DEADLOCK. This allows applications to distinguish
between operations which have deadlocked and operations which have exceeded their time limits.

Calling DB_ENV->set _flags() with the DB_TIME_NOTGRANTED flag only affects the specified DB_ENV
handle (and any other Berkeley DB handles opened within the scope of that handle). For consistent
behavior across the environment, all DB_ENV handles opened in the environment must either set the
DB_TIME_NOTGRANTED flag or the flag should be specified in the DB_CONFIG configuration file.

The DB_TI ME_NOTGRANTED flag may be used to configure Berkeley DB at any time during the life of
the application.

Note that the DB_ENV->lock_get() and DB_ENV->lock_vec() methods are unaffected by this flag.
DB_TXN_NOSYNC

If set, Berkeley DB will not write or synchronously flush the log on transaction commit. This means
that transactions exhibit the ACI (atomicity, consistency, and isolation) properties, but not D

(durability); that is, database integrity will be maintained, but if the application or system fails, it
is possible some number of the most recently committed transactions may be undone during recovery.
The number of transactions at risk is governed by how many log updates can fit into the log buffer,
how often the operating system flushes dirty buffers to disk, and how often the log is checkpointed.

Calling DB_ENV->set fl ags() with the DB_TXN_NOSYNC flag only affects the specified DB_ENV handle
(and any other Berkeley DB handles opened within the scope of that handle). For consistent behavior

4/12/2010

DB C API Page 251

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/program_errorret.html#program_errorret.DB_LOCK_NOTGRANTED
../../programmer_reference/program_errorret.html#program_errorret.DB_LOCK_DEADLOCK
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

DB_ENV->set_flags()

across the environment, all DB_ENV handles opened in the environment must either set the
DB_TXN_NOSYNC flag or the flag should be specified in the DB_CONFIG configuration file.

The DB_TXN_NOSYNC flag may be used to configure Berkeley DB at any time during the life of the
application.

DB_TXN_NOWAI T

If set and a lock is unavailable for any Berkeley DB operation performed in the context of a transaction,
cause the operation to return DB_LOCK_DEADLOCK (or DB_LOCK_NOTGRANTED if configured using
the DB_TIME_NOTGRANTED flag).

Calling DB_ENV->set _fl ags() with the DB_TXN_NOWAIT flag only affects the specified DB_ENV handle
(and any other Berkeley DB handles opened within the scope of that handle). For consistent behavior
across the environment, all DB_ENV handles opened in the environment must either set the
DB_TXN_NOWAIT flag or the flag should be specified in the DB_CONFIG configuration file.

The DB_TXN_NOWAIT flag may be used to configure Berkeley DB at any time during the life of the
application.

DB_TXN_SNAPSHOT

If set, all transactions in the environment will be started as if DB_TXN_SNAPSHOT were passed to
the DB_ENV->txn_begin() method, and all non-transactional cursors will be opened as if
DB_TXN_SNAPSHOT were passed to the DB->cursor() method.

Calling DB_ENV->set _flags() with the DB_TXN_SNAPSHOT flag only affects the specified DB_ENV
handle (and any other Berkeley DB handles opened within the scope of that handle). For consistent
behavior across the environment, all DB_ENV handles opened in the environment must either set the
DB_TXN_SNAPSHOT flag or the flag should be specified in the DB_CONFIG configuration file.

The DB_TXN_SNAPSHOT flag may be used to configure Berkeley DB at any time during the life of the
application.

DB_TXN_WRI TE_NOSYNC

If set, Berkeley DB will write, but will not synchronously flush, the log on transaction commit. This
means that transactions exhibit the ACI (atomicity, consistency, and isolation) properties, but not
D (durability); that is, database integrity will be maintained, but if the system fails, it is possible
some number of the most recently committed transactions may be undone during recovery. The
number of transactions at risk is governed by how often the system flushes dirty buffers to disk and
how often the log is checkpointed.

Calling DB_ENV->set _flags() with the DB_TXN_WRITE_NOSYNC flag only affects the specified DB_ENV
handle (and any other Berkeley DB handles opened within the scope of that handle). For consistent
behavior across the environment, all DB_ENV handles opened in the environment must either set the
DB_TXN_WRITE_NOSYNC flag or the flag should be specified in the DB_CONFIG configuration file.

The DB_TXN_WRITE_NOSYNC flag may be used to configure Berkeley DB at any time during the life
of the application.

4/12/2010

DB C API Page 252

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/program_errorret.html#program_errorret.DB_LOCK_DEADLOCK
../../programmer_reference/program_errorret.html#program_errorret.DB_LOCK_NOTGRANTED
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

DB_ENV->set_flags()

« DB_YI ELDCPU

If set, Berkeley DB will yield the processor immediately after each page or mutex acquisition. This
functionality should never be used for purposes other than stress testing.

Calling DB_ENV->set _flags() with the DB_YIELDCPU flag only affects the specified DB_ENV handle
(and any other Berkeley DB handles opened within the scope of that handle). For consistent behavior
across the environment, all DB_ENV handles opened in the environment must either set the
DB_YIELDCPU flag or the flag should be specified in the DB_CONFIG configuration file.

The DB_YIELDCPU flag may be used to configure Berkeley DB at any time during the life of the
application.

onoff
If the onoff parameter is zero, the specified flags are cleared; otherwise they are set.
Errors
The DB_ENV- >set _fl ags() method may fail and return one of the following non-zero errors:
EINVAL
An invalid flag value or parameter was specified.
Class
DB_ENV
See Also

Database Environments and Related Methods

4/12/2010 DB C API Page 253

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

DB_ENV->set_intermediate_dir_mode()

DB_ENV->set_intermediate_dir_mode()

#i ncl ude <db. h>

i nt
DB_ENV->set _internedi ate_dir_nmode(DB_ENV *dbenv, const char *node);

By default, Berkeley DB does not create intermediate directories needed for recovery, that is, if the
file /a/b/c/mydatabase is being recovered, and the directory path b/c does not exist, recovery will
fail. This default behavior is because Berkeley DB does not know what permissions are appropriate for
intermediate directory creation, and creating the directory might result in a security problem.

The DB_ENV->set i nternedi ate_dir_node() method causes Berkeley DB to create any intermediate
directories needed during recovery, using the specified permissions.

On UNIX systems or in IEEE/ANSI Std 1003.1 (POSIX) environments, created directories are owned by
the process owner; the group ownership of created directories is based on the system and directory
defaults, and is not further specified by Berkeley DB.

The database environment's intermediate directory permissions may also be configured using the
environment's DB_CONFIG file. The syntax of the entry in that file is a single line with the string
"set_intermediate_dir_mode", one or more whitespace characters, and the directory permissions.
Because the DB_CONFIG file is read when the database environment is opened, it will silently overrule
configuration done before that time.

The DB_ENV- >set i nternedi ate_dir_node() method configures operations performed using the specified
DB_ENV handle, not all operations performed on the underlying database environment.

The DB_ENV->set i nternedi ate_dir_node() method may not be called after the DB_ENV->open() method
is called.

The DB_ENV->set i nternedi ate_dir_node() method returns a non-zero error value on failure and 0 on
success.

Parameters

mode
The mode parameter specifies the directory permissions.

Directory permissions are interpreted as a string of nine characters, using the character set r (read),
w (write), x (execute or search), and - (none). The first character is the read permissions for the
directory owner (set to either r or -). The second character is the write permissions for the directory
owner (set to either w or -). The third character is the execute permissions for the directory owner
(set to either x or -).

Similarly, the second set of three characters are the read, write and execute/search permissions for
the directory group, and the third set of three characters are the read, write and execute/search
permissions for all others. For example, the string rwx------ would configure read, write and
execute/search access for the owner only. The string rwxrwx--- would configure read, write and

4/12/2010

DB C API Page 254

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

DB_ENV->set_intermediate_dir_mode()

execute/search access for both the owner and the group. The string rwxr----- would configure read,
write and execute/search access for the directory owner and read-only access for the directory group.

Errors
The DB_ENV->set i nternedi ate_dir_node() method may fail and return one of the following non-zero
errors:
EINVAL
If the method was called after DB_ENV->open() was called; or if an invalid flag value or parameter was
specified.

Class
DB_ENV

See Also
Database Environments and Related Methods

4/12/2010 DB C API

Page 255

DB_ENV->set_isalive()

DB_ENV->set_isalive()

#i ncl ude <db. h>

i nt
DB _ENV->set _isalive(DB ENV *dbenv, int (*is_alive)(DB_ENV *dbenv,
pidt pid, db_threadid t tid, u_int32_t flags));

Declare a function that returns if a thread of control (either a true thread or a process) is still running.
The DB_ENV->set i sal i ve() method supports the DB_ENV->failchk() method. For more information,
see Architecting Data Store and Concurrent Data Store applications, and Architecting Transactional
Data Store applications, both in the Berkeley DB Programmer’s Reference Guide.

The DB_ENV->set _i sal i ve() method configures operations performed using the specified DB_ENV handle,
not all operations performed on the underlying database environment.

The DB_ENV->set i salive() method may be called at any time during the life of the application.

The DB_ENV->set i salive() method returns a non-zero error value on failure and 0 on success.

Parameters

is_alive

The is_alive parameter is a function which returns non-zero if the thread of control, identified by the
pid and tid arguments, is still running. The function takes four arguments:

« dbenv

The dbenv parameter is the enclosing database environment handle, allowing application access to
the application-private fields of that object.

» pid

The pid parameter is a process ID returned by the function specified to the DB_ENV->set_thread_id()
method.

- tid

The tid parameter is a thread ID returned by the function specified to the DB_ENV->set_thread_id()
method.

« flags
The flags parameter must be set to 0 or the following value:
« DB_MJTEX_PROCESS_ONLY

Return only if the process is alive, the thread ID should be ignored.

4/12/2010

DB C API Page 256

../../programmer_reference/cam_app.html
../../programmer_reference/transapp_app.html
../../programmer_reference/transapp_app.html

DB_ENV->set_isalive()

Errors
The DB_ENV->set i sal i ve() method may fail and return one of the following non-zero errors:
EINVAL
An invalid flag value or parameter was specified.
Class
DB_ENV
See Also

Database Environments and Related Methods

4/12/2010 DB C API Page 257

DB_ENV->set_msgcall()

DB_ENV->set_msgcall()

#i ncl ude <db. h>

voi d
DB_ENV->set _nsgcal | (DB_ENV *dbenv,
void (*db_nsgcal | _fcn)(const DB_ENV *dbenv, const char *msg));

There are interfaces in the Berkeley DB library which either directly output informational messages or
statistical information, or configure the library to output such messages when performing other
operations, for example, DB_ENV->set_verbose() and DB_ENV->stat_print().

The DB_ENV- >set _nsgcal | () and DB->set_msgcall() methods are used to pass these messages to the
application, and Berkeley DB will call db_msgcall_fcn with each message. It is up to the db_msgcall_fcn
function to display the message in an appropriate manner.

Setting db_msgcall_fcn to NULL unconfigures the callback interface.

Alternatively, you can use the DB->set_msgfile() or DB->set_msgfile() methods to display the messages
via a C library FILE *.

The DB_ENV->set _nsgcal | () method configures operations performed using the specified DB_ENV handle,
not all operations performed on the underlying database environment.

The DB_ENV->set _nsgcal | () method may be called at any time during the life of the application.
|:| Berkeley DB is not re-entrant. Callback functions should not attempt to make library calls (for
example, to release locks or close open handles). Re-entering Berkeley DB is not guaranteed to
work correctly, and the results are undefined.
Parameters
db_msgcall_fcn

The db_msgcall_fcn parameter is the application-specified message reporting function. The function
takes two parameters:

« dbenv
The dbenv parameter is the enclosing database environment.
. Mg
The msg parameter is the message string.
Class
DB_ENV
See Also

Database Environments and Related Methods

4/12/2010 DB C API Page 258

DB_ENV->set_msgfile()

DB_ENV->set_msgfile()

#i ncl ude <db. h>

voi d
DB_ENV->set _nsgfil e(DB_ENV *dbenv, FILE *nsgfile);

There are interfaces in the Berkeley DB library which either directly output informational messages or
statistical information, or configure the library to output such messages when performing other
operations, for example, DB_ENV->set_verbose() and DB_ENV->stat_print().

The DB_ENV- >set _nsgfil e() and DB->set_msgfile() methods are used to display these messages for the
application. In this case the message will include a trailing <newline> character.

Setting msgfile to NULL unconfigures the interface.

Alternatively, you can use the DB_ENV->set_msgcall() or DB->set_msgcall() methods to capture the
additional error information in a way that does not use C library FILE *'s.

The DB_ENV->set _nsgfil e() method configures operations performed using the specified DB_ENV handle,
not all operations performed on the underlying database environment.

The DB_ENV->set _nsgfil e() method may be called at any time during the life of the application.

Parameters

msdgfile

The msgfile parameter is a C library FILE * to be used for displaying messages.

Class
DB_ENV
See Also
Database Environments and Related Methods
4/12/2010 DB C API Page 259

DB_ENV->set_shm_key()

DB_ENV->set_shm_key()

#i ncl ude <db. h>

int
DB_ENV->set _shm key(DB_ENV *dbenv, |ong shm key);

Specify a base segment ID for Berkeley DB environment shared memory regions created in system
memory on VxWorks or systems supporting X/Open-style shared memory interfaces; for example, UNIX
systems supporting shmget(2) and related System V IPC interfaces.

This base segment ID will be used when Berkeley DB shared memory regions are first created. It will
be incremented a small integer value each time a new shared memory region is created; that is, if the
base ID is 35, the first shared memory region created will have a segment ID of 35, and the next one
will have a segment ID between 36 and 40 or so. A Berkeley DB environment always creates a master
shared memory region; an additional shared memory region for each of the subsystems supported by
the environment (Locking, Logging, Memory Pool and Transaction); plus an additional shared memory
region for each additional memory pool cache that is supported. Already existing regions with the same
segment IDs will be removed. See Shared Memory Regions for more information.

The intent behind this method is two-fold: without it, applications have no way to ensure that two
Berkeley DB applications don't attempt to use the same segment IDs when creating different Berkeley
DB environments. In addition, by using the same segment IDs each time the environment is created,
previously created segments will be removed, and the set of segments on the system will not grow
without bound.

The database environment's base segment ID may also be configured using the environment's DB_CONFIG
file. The syntax of the entry in that file is a single line with the string "set_shm_key", one or more
whitespace characters, and the ID. Because the DB_CONFIG file is read when the database environment
is opened, it will silently overrule configuration done before that time.

The DB_ENV- >set _shm key() method configures operations performed using the specified DB_ENV handle,
not all operations performed on the underlying database environment.

The DB_ENV- >set _shm key() method may not be called after the DB_ENV->open() method is called. If
the database environment already exists when DB_ENV->open() is called, the information specified to
DB_ENV->set _shm key() must be consistent with the existing environment or corruption can occur.

The DB_ENV->set _shm key() method returns a non-zero error value on failure and 0 on success.
Parameters

shm_key

The shm_key parameter is the base segment ID for the database environment.
Errors

The DB_ENV- >set _shm key() method may fail and return one of the following non-zero errors:

4/12/2010 DB C API Page 260

../../programmer_reference/env_region.html
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

DB_ENV->set_shm_key()

EINVAL
If the method was called after DB_ENV->open() was called; or if an invalid flag value or parameter was
specified.
Class
DB_ENV
See Also

Database Environments and Related Methods

4/12/2010 DB C API Page 261

DB_ENV->set_thread_count()

DB_ENV->set_thread_count()

#i ncl ude <db. h>

i nt
DB _ENV->set _thread_count (DB_ENV *dbenv, u_int32_t count);

Declare an approximate number of threads in the database environment. The

DB ENV->set _t hread_count () method must be called prior to opening the database environment if the
DB_ENV->failchk() method will be used. The DB_ENV->set _t hread_count () method does not set the
maximum number of threads but is used to determine memory sizing and the thread control block
reclamation policy.

If a process has not configured an is_alive function from the DB_ENV->set_isalive() method, and then
attempts to join a database environment configured for failure checking with the DB_ENV->failchk(),
DB_ENV->set_thread_id(), DB_ENV->set_isalive() and DB_ENV- >set _t hread_count () methods, the program
may be unable to allocate a thread control block and fail to join the environment. This is true of the
standalone Berkeley DB utility programs. To avoid problems when using the standalone Berkeley DB
utility programs with environments configured for failure checking, incorporate the utility's functionality
directly in the application, or call the DB_ENV->failchk() method before running the utility.

The database environment's thread count may also be configured using the environment's DB_CONFIG
file. The syntax of the entry in that file is a single line with the string "set_thread_count”, one or more
whitespace characters, and the thread count. Because the DB_CONFIG file is read when the database
environment is opened, it will silently overrule configuration done before that time.

The DB_ENV->set thread_count () method configures operations performed using the specified DB_ENV
handle, not all operations performed on the underlying database environment.

The DB_ENV- >set _t hread_count () method may not be called after the DB_ENV->open() method is called.

The DB_ENV- >set _t hread_count () method returns a non-zero error value on failure and 0 on success.

Parameters
count
The count parameter is an approximate thread count for the database environment.
Errors
The DB_ENV->set _t hread_count () method may fail and return one of the following non-zero errors:
EINVAL

If the method was called after DB_ENV->open() was called; or if an invalid flag value or parameter was
specified.

4/12/2010 DB C API Page 262

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

DB_ENV->set_thread_count()

Class
DB_ENV

See Also

Database Environments and Related Methods

4/12/2010 DB C API Page 263

DB_ENV->set_thread_id()

DB_ENV->set_thread_id()

#i ncl ude <db. h>

i nt
DB_ENV->set thread_i d(DB_ENV *dbenv,
void (*thread_id)(DB_ENV *dbenv, pid_t *pid, db_threadid t *tid));

Declare a function that returns a unique identifier pair for the current thread of control. The

DB ENV->set thread_id() method supports the DB_ENV->failchk() method. For more information, see
Architecting Data Store and Concurrent Data Store applications, and Architecting Transactional Data
Store applications, both in the Berkeley DB Programmer’s Reference Guide.

The DB_ENV->set thread_i d() method configures operations performed using the specified DB_ENV
handle, not all operations performed on the underlying database environment.

The DB_ENV->set thread_i d() method may be called at any time during the life of the application.

The DB_ENV->set thread_i d() method returns a non-zero error value on failure and 0 on success.

Parameters

Errors

thread_id

The thread_id parameter is a function which returns a unique identifier pair for a thread of control
in a Berkeley DB application. The function takes three arguments:

« dbenv

The dbenv parameter is the enclosing database environment handle, allowing application access to
the application-private fields of that object.

» pid

The pid points to a memory location of type pi d_t, or NULL. The process ID of the current thread
of control may be returned in this memory location, if it is not NULL.

- tid

The tid points to a memory location of type db_t hreadi d_t , or NULL. The thread ID of the current
thread of control may be returned in this memory location, if it is not NULL.

The DB_ENV->set thread_i d() method may fail and return one of the following non-zero errors:
EINVAL

An invalid flag value or parameter was specified.

4/12/2010

DB C API Page 264

../../programmer_reference/cam_app.html
../../programmer_reference/transapp_app.html
../../programmer_reference/transapp_app.html

DB_ENV->set_thread_id()

Assigning Thread IDs

The standard system library calls to return process and thread IDs are often sufficient for this purpose
(for example, get pi d() and pt hread_sel f () on POSIX systems or GetCurrentThreadID on Windows
systems). However, if the Berkeley DB application dynamically creates processes or threads, some care
may be necessary in assigning unique IDs. In most threading systems, process and thread IDs are available
for re-use as soon as the process or thread exits. If a new process or thread is created between the
time of process or thread exit, and the DB_ENV->failchk() method is run, it may be possible for
DB_ENV->failchk() to not detect that a thread of control exited without properly releasing all Berkeley
DB resources.

It may be possible to handle this problem by inhibiting process or thread creation between thread of
control exit and calling the DB_ENV->failchk() method. Alternatively, the thread_id function must be
constructed to not re-use pid/tid pairs. For example, in a single process application, the returned
process ID might be used as an incremental counter, with the returned thread ID set to the actual
thread ID. Obviously, the is_alive function specified to the DB_ENV->set_isalive() method must be
compatible with any thread_id function specified to DB _ENV->set thread_id().

The db_threadid_t type is configured to be the same type as a standard thread identifier, in Berkeley
DB configurations where this type is known (for example, systems supporting pthread_t or thread_t,
or DWORD on Windows). If the Berkeley DB configuration process is unable to determine the type of a
standard thread identifier, the db_thread_t type is set to uintmax_t (or the largest available unsigned
integral type, on systems lacking the uintmax_t type). Applications running on systems lacking a
detectable standard thread type, and which are also using thread APIs where a thread identifier is not
an integral value and so will not fit into the configured db_threadid_t type, must either translate
between the db_threadid_t type and the thread identifier (mapping the thread identifier to a unique
identifier of the appropriate size), or modify the Berkeley DB sources to use an appropriate db_threadid_t
type. Note: we do not currently know of any systems where this is necessary. If your application has
to solve this problem, please contact our support group and let us know.

If no thread_id function is specified by the application, the Berkeley DB library will identify threads
of control by using the t askl dSel f () call on VxWorks, the get pi d() and Get Current Threadl () calls
on Windows, the get pi d() and pt hread_sel f () calls when the Berkeley DB library has been configured
for POSIX pthreads or Solaris LWP threads, the getpid() and thr_sel f() calls when the Berkeley DB
library has been configured for Ul threads, and otherwise get pi d() .

Class
DB_ENV
See Also
Database Environments and Related Methods
4/12/2010 DB C API Page 265

DB_ENV->set_thread_id_string()

DB_ENV->set_thread_id_string()

#i ncl ude <db. h>

int

DB_ENV->set thread_id_string(DB_ENV *dbenv,
char *(*thread_id_string)(DB_ENV *dbenv,
pidt pid, db_threadid t tid, char *buf));

Declare a function that formats a process ID and thread ID identifier pair for display into a caller-supplied
buffer. The function must return a reference to the caller-specified buffer. The
DB ENV->set _thread_id_string() method supports the DB_ENV->set_thread_id() method.

The DB_ENV->set thread_id_string() method configures operations performed using the specified
DB_ENV handle, not all operations performed on the underlying database environment.

The DB_ENV->set thread i d _string() method may be called at any time during the life of the
application.

The DB_ENV->set _thread_id_string() method returns a non-zero error value on failure and 0 on success.

Parameters

thread_id_string

The thread_id_string parameter is a function which returns a buffer in which is an identifier pair
formatted for display. The function takes four arguments:

o dbenv

The dbenv parameter is the enclosing database environment handle, allowing application access to
the application-private fields of that object.

e pid

The pid argument is a process ID.
o tid

The tid argument is a thread ID.
* buf

The buf argument is character array of at least DB_THREADID_STRLEN bytes in length, into which
the identifier pair should be formatted.

If no thread_id_string function is specified, the default routine displays the identifier pair as "pid/tid",
that is, the process ID represented as an unsigned integer value, a slash ('/') character, then the thread
ID represented as an unsigned integer value.

4/12/2010

DB C API Page 266

DB_ENV->set_thread_id_string()

Errors
The DB_ENV->set _thread_id_string() method may fail and return one of the following non-zero errors:
EINVAL
An invalid flag value or parameter was specified.
Class
DB_ENV
See Also

Database Environments and Related Methods

4/12/2010 DB C API Page 267

DB_ENV->set_timeout()

DB_ENV->set_timeout()

#i ncl ude <db. h>

i nt
DB _ENV->set timeout (DB _ENV *dbenv, db_tineout t tineout,
u_int32_t flags);

The DB_ENV->set _timeout () method sets timeout values for locks or transactions in the database
environment, and the wait time for a process to exit the environment when DB_REGISTER recovery is
needed.

DB_SET_LOCK_TIMEOUT and DB_SET_TXN_TIMEOUT timeouts are checked whenever a thread of control
blocks on a lock or when deadlock detection is performed. In the case of DB_SET_LOCK_TIMEOUT, the
lock is one requested explicitly through the Lock subsystem interfaces. In the case of
DB_SET_TXN_TIMEOUT, the lock is one requested on behalf of a transaction. In either case, it may be
a lock requested by the database access methods underlying the application. These timeouts are only
checked when the lock request first blocks or when deadlock detection is performed, the accuracy of
the timeout depends on how often deadlock detection is performed.

Lock and transaction timeout values specified for the database environment may be overridden on a
per-lock or per-transaction basis. See DB_ENV->lock_vec() and DB_TXN->set_timeout() for more
information.

The DB_ENV- >set _timeout () method may be called at any time during the life of the application.

The DB_ENV- >set _timeout () method returns a non-zero error value on failure and 0 on success.

Parameters

flags
The flags parameter must be set to one of the following values:
« DB SET_LOCK_TI MEQUT

Set the timeout value for locks in this database environment.

The database environment's lock timeout value may also be configured using the environment'’s
DB_CONFIG file. The syntax of the entry in that file is a single line with the string "set_lock_timeout",
one or more whitespace characters, and the lock timeout value. Because the DB_CONFIG file is read
when the database environment is opened, it will silently overrule configuration done before that
time.

This flag configures a database environment, not only operations performed using the specified
DB_ENV handle.

« DB_SET_REG_TI MEQUT

4/12/2010

DB C API Page 268

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

DB_ENV->set_timeout()

Set the timeout value on how long to wait for processes to exit the environment before recovery is
started when the DB_ENV->open() method was called with the DB_REGISTER flag and recovery must
be performed.

This wait timeout value may also be configured using the environment's DB_CONFIG file. The syntax
of the entry in that file is a single line with the string "set_reg_timeout”, one or more whitespace
characters, and the wait timeout value. Because the DB_CONFIG file is read when the database
environment is opened, it will silently overrule configuration done before that time.

This flag configures operations performed using the specified DB_ENV handle.
DB SET_TXN_TI MEQUT
Set the timeout value for transactions in this database environment.

The database environment's transaction timeout value may also be configured using the environment's
DB_CONFIG file. The syntax of the entry in that file is a single line with the string "set_txn_timeout",
one or more whitespace characters, and the transaction timeout value. Because the DB_CONFIG file
is read when the database environment is opened, it will silently overrule configuration done before
that time.

This flag configures a database environment, not only operations performed using the specified
DB_ENV handle.

timeout

The timeout parameter is the timeout value. It must be specified as an unsigned 32-bit number of
microseconds, limiting the maximum timeout to roughly 71 minutes.

Errors

The DB_ENV- >set _timeout () method may fail and return one of the following non-zero errors:

EINVAL

An invalid flag value or parameter was specified.

Class
DB_ENV
See Also
Database Environments and Related Methods
4/12/2010 DB C API Page 269

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

DB_ENV->set_tmp_dir()

DB_ENV->set_tmp_dir()

#i ncl ude <db. h>

i nt
DB_ENV->set tnp_dir(DB_ENV *dbenv, const char *dir);

Specify the path of a directory to be used as the location of temporary files. The files created to back
in-memory access method databases will be created relative to this path. These temporary files can
be quite large, depending on the size of the database.

If no directories are specified, the following alternatives are checked in the specified order. The first
existing directory path is used for all temporary files.

1. The value of the environment variable TMPDIR.

2. The value of the environment variable TEMP.

3. The value of the environment variable TMP.

4. The value of the environment variable TempFolder.
5. The value returned by the GetTempPath interface.
6. The directory /var/tmp.

7. The directory /usr/tmp.

8. The directory /temp.

9. The directory /tmp.

1 The directory C:/temp.

11. The directory C:/tmp.

|:| Environment variables are only checked if one of the DB_USE_ENVIRON or DB_USE_ENVIRON_ROOT
flags were specified.

|:| The GetTempPath interface is only checked on Win/32 platforms.

The database environment's temporary file directory may also be configured using the environment's

DB_CONFIG file. The syntax of the entry in that file is a single line with the string "set_tmp_dir", one

or more whitespace characters, and the directory name. Because the DB_CONFIG file is read when the
database environment is opened, it will silently overrule configuration done before that time.

The DB_ENV->set _tnp_di r() method configures operations performed using the specified DB_ENV handle,
not all operations performed on the underlying database environment.

The DB_ENV->set _tnp_dir() method returns a non-zero error value on failure and 0 on success.

4/12/2010

DB C API Page 270

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

DB_ENV->set_tmp_dir()

Parameters

Errors

dir
The dir parameter is the directory to be used to store temporary files.

When using a Unicode build on Windows (the default), the this argument will be interpreted as a UTF-8
string, which is equivalent to ASCII for Latin characters.

The DB_ENV- >set _t np_di r () method may fail and return one of the following non-zero errors:
EINVAL

If the method was called after DB_ENV->open() was called; or if an invalid flag value or parameter was
specified.

Class
DB_ENV
See Also
Database Environments and Related Methods
4/12/2010 DB C API Page 271

DB_ENV->set_verbose()

DB_ENV->set_verbose()

#i ncl ude <db. h>

i nt
DB_ENV->set verbose(DB ENV *dbenv, u_int32_t which, int onoff);

The DB_ENV- >set _verbose() method turns specific additional informational and debugging messages
in the Berkeley DB message output on and off. To see the additional messages, verbose messages must
also be configured for the application. For more information on verbose messages, see the
DB_ENV->set_msgfile() method.

The database environment's messages may also be configured using the environment's DB_CONFIG file.
The syntax of the entry in that file is a single line with the string "set_verbose", one or more whitespace
characters, and the method which parameter as a string; for example, "set_verbose
DB_VERB_RECOVERY". Because the DB_CONFIG file is read when the database environment is opened,
it will silently overrule configuration done before that time.

The DB_ENV->set _ver bose() method configures operations performed using the specified DB_ENV handle,
not all operations performed on the underlying database environment.

The DB_ENV- >set _verbose() method may be called at any time during the life of the application.

The DB_ENV- >set _verbose() method returns a non-zero error value on failure and 0 on success.

Parameters

onoff
If the onoff parameter is set to non-zero, the additional messages are output.
which
The which parameter must be set to one of the following values:
« DB_VERB_DEADLOCK
Display additional information when doing deadlock detection.
« DB VERB_FI LEOPS

Display additional information when performing filesystem operations such as open, close or rename.
May not be available on all platforms.

« DB_VERB_FI LECPS ALL

Display additional information when performing all filesystem operations, including read and write.
May not be available on all platforms.

« DB_VERB_RECOVERY

4/12/2010

DB C API Page 272

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

DB_ENV->set_verbose()

Errors

Display additional information when performing recovery.
« DB VERB_REG STER

Display additional information concerning support for the DB_REGISTER flag to the DB_ENV->open()
method.

« DB_VERB_REPLI CATI ON

Display all detailed information about replication. This includes the information displayed by all of
the other DB_VERB_REP_* and DB_VERB_REPMGR_* values.

« DB VERB_REP ELECT
Display detailed information about replication elections.
+ DB VERB_REP_LEASE
Display detailed information about replication master leases.
« DB_VERB_REP_M SC

Display detailed information about general replication processing not covered by the other
DB_VERB_REP_* values.

« DB_VERB_REP_MBGS
Display detailed information about replication message processing.
« DB_VERB_REP_SYNC
Display detailed information about replication client synchronization.
« DB VERB_REPMGR CONNFAI L
Display detailed information about Replication Manager connection failures.
« DB_VERB_REPMGR M SC
Display detailed information about general Replication Manager processing.
« DB VERB WAI TSFOR

Display the waits-for table when doing deadlock detection.

The DB_ENV- >set _verbose() method may fail and return one of the following non-zero errors:
EINVAL

An invalid flag value or parameter was specified.

4/12/2010

DB C API Page 273

DB_ENV->set_verbose()

Class
DB_ENV

See Also

Database Environments and Related Methods

4/12/2010 DB C API Page 274

DB_ENV->stat_print()

DB_ENV->stat_print()

#i ncl ude <db. h>

i nt
DB _ENV->stat _print (DB_ENV *dbenv, u_int32_t flags);

The DB_ENV->stat _print () method displays the default statistical information. The information is
printed to a specified output channel (see the DB_ENV->set_msgfile() method for more information),
or passed to an application callback function (see the DB_ENV->set_msgcall() method for more
information).

The DB_ENV->stat _print () method may not be called before the DB_ENV->open() method is called.

The DB_ENV->stat _print () method returns a non-zero error value on failure and 0 on success.
Parameters

flags

The flags parameter must be set to 0 or by bitwise inclusively OR'ing together one or more of the
following values:

+ DB STAT ALL
Display all available information.
« DB_STAT CLEAR
Reset statistics after displaying their values.
« DB _STAT_SUBSYSTEM
Display information for all configured subsystems.
Class
DB_ENV
See Also

Database Environments and Related Methods

4/12/2010 DB C API Page 275

db_strerror

db_strerror
#incl ude <db. h>

char *
db_strerror(int error);

The db_strerror() method returns an error message string corresponding to the error number error
parameter.

This function is a superset of the ANSI C X3.159-1989 (ANSI C) strerror(3) function. If the error number
error is greater than or equal to 0, then the string returned by the system function strerror(3) is
returned. If the error number is less than 0, an error string appropriate to the corresponding Berkeley
DB library error is returned. See Error returns to applications for more information.

Parameters
error

The error parameter is the error number for which an error message string is wanted.

Class

DB_ENV
See Also

Database Environments and Related Methods
4/12/2010 DB C API

Page 276

../../programmer_reference/program_errorret.html

db_version

db_version
#i ncl ude <db. h>

char *
db_version(int *major, int *mnor, int *patch);

The db_versi on() method returns a pointer to a string, suitable for display, containing Berkeley DB
version information.

Parameters
major

If major is non-NULL, the major version of the Berkeley DB release is copied to the memory to which
it refers.

minor

If minor is non-NULL, the minor version of the Berkeley DB release is copied to the memory to which
it refers.

patch

If patch is non-NULL, the patch version of the Berkeley DB release is copied to the memory to which
it refers.

Class
DB_ENV

See Also

Database Environments and Related Methods

4/12/2010 DB C API Page 277

Chapter 6. The DB_LOCK Handle

#i ncl ude <db. h>

typedef struct _ db_lock u DB LOCK;

The locking interfaces for the Berkeley DB database environment are methods of the DB_ENV handle.
The DB_LOCK object is the handle for a single lock, and has no methods of its own.

4/12/2010 DB C API Page 278

Locking Subsystem and Related
Methods

Locking Subsystem and Related Methods

Locking Subsystem and Related
Methods

Description

DB_ENV->lock_detect()

Perform deadlock detection

DB_ENV->lock_get()

Acquire a lock

DB_ENV->lock_id()

Acquire a locker ID

DB_ENV->lock_id_free()

Release a locker ID

DB_ENV->lock_put()

Release a lock

DB_ENV->lock_stat()

Return lock subsystem statistics

DB_ENV->lock_stat_print()

Print lock subsystem statistics

DB_ENV->lock_vec()

Acquire/release locks

DB_ENV->cdsgroup_begin()

Get a locker ID in Berkeley DB Concurrent Data
Store

Locking Subsystem Configuration

DB_ENV->set_timeout(), DB_ENV->get_timeout()

Set/get lock and transaction timeout

DB_ENV->set_Lk_conflicts(),
DB_ENV->get_lk_conflicts()

Set/get lock conflicts matrix

DB_ENV->set_lk_detect(), DB_ENV->get_lk_detect()

Set/get automatic deadlock detection

DB_ENV->set_lk_max_lockers(),
DB_ENV->get_lk_max_lockers()

Set/get maximum number of lockers

DB_ENV->set_lk_max_locks(),
DB_ENV->get_lk_max_locks()

Set/get maximum number of locks

DB_ENV->set_lk_max_objects(),
DB_ENV->get_lk_max_objects()

Set/get maximum number of lock objects

DB_ENV->set_lk_partitions(),
DB_ENV->get_lk_partitions()

Set/get number of lock partitions

DB C API

Page 279

DB_ENV->get_lk_conflicts()

DB_ENV->get_Ilk_conflicts()

#i ncl ude <db. h>

i nt
DB _ENV->get | k_conflicts(DB_ENV *dbenv,
const u_int8 t **lk _conflictsp, int *I k_nodesp);

The DB_ENV->get | k_conflicts() method returns the current conflicts array. You can specify a conflicts
array using DB_ENV->set_Llk_conflicts()

The DB_ENV->get |k _conflicts() method may be called at any time during the life of the application.

The DB_ENV->get |k _conflicts() method returns a non-zero error value on failure and 0 on success.

Parameters

Ik_conflictsp

The lk_conflictsp parameter references memory into which a pointer to the current conflicts array is
copied.

Ik_modesp

The lk_modesp parameter references memory into which the size of the current conflicts array is
copied.

Errors
The DB_ENV->get |k _conflicts() method may fail and return one of the following non-zero errors:
EINVAL
The method was called on an environment which had been opened without being configured for locking.
Class
DB_ENV, DB_LOCK
See Also

Locking Subsystem and Related Methods, DB_ENV->set_lk_conflicts()

4/12/2010 DB C API Page 280

DB_ENV->get_lk_detect()

DB_ENV->get_lk_detect()

#i ncl ude <db. h>

i nt
DB _ENV->get | k_detect (DB_ENV *dbenv, u_int32_t *|k_detectp);

The DB_ENV->get | k_detect () method returns the deadlock detector configuration. You can manage
this using the DB_ENV->set_lk_detect() method.

The DB_ENV->get | k_detect () method may be called at any time during the life of the application.

The DB_ENV->get | k_detect () method returns a non-zero error value on failure and 0 on success.
Parameters

Ik_detectp

The DB_ENV->get _| k_det ect () method returns the deadlock detector configuration in lk_detectp.
Errors

The DB_ENV->get _| k_det ect () method may fail and return one of the following non-zero errors:

EINVAL

The method was called on an environment which had been opened without being configured for locking.
Class

DB_ENV, DB_LOCK
See Also

Locking Subsystem and Related Methods, DB_ENV->set_lk_detect()

4/12/2010 DB C API Page 281

DB_ENV->get_lk_max_lockers()

DB_ENV->get_Ilk_max_lockers()

#i ncl ude <db. h>

i nt
DB _ENV->get | k_max_| ockers(DB_ENV *dbenv, u_int32_t *|k_maxp);

The DB_ENV->get | k_max_| ockers() method returns the maximum number of potential lockers. You
can configure this using the DB_ENV->set_lk_max_lockers() method.

The DB_ENV->get | k_max_| ockers() method may be called at any time during the life of the application.

The DB_ENV->get | k_max_| ockers() method returns a non-zero error value on failure and 0 on success.
Parameters

Ik_maxp

The DB_ENV->get _| k_max_| ockers() method returns the maximum number of lockers in lk_maxp.
Errors

The DB_ENV->get _| k_max_| ockers() method may fail and return one of the following non-zero errors:

EINVAL

The method was called on an environment which had been opened without being configured for locking.
Class

DB_ENV, DB_LOCK
See Also

Locking Subsystem and Related Methods, DB_ENV->set_lk_max_lockers()

4/12/2010 DB C API Page 282

DB_ENV->get_lk_max_locks()

DB_ENV->get_Ilk_max_locks()

#i ncl ude <db. h>

i nt
DB_ENV->get | k_max_| ocks(DB_ENV *dbenv, u_int32_t *Ik_maxp);

The DB_ENV->get | k_max_| ocks() method returns the maximum number of potential locks. You can
configure this using the DB_ENV->set_lk_max_locks() method.

The DB_ENV->get | k_max_| ocks() method may be called at any time during the life of the application.

The DB_ENV->get | k_max_| ocks() method returns a non-zero error value on failure and 0 on success.
Parameters

Ik_maxp

The DB_ENV->get _| k_max_| ocks() method returns the maximum number of locks in lk_maxp.
Errors

The DB_ENV->get _| k_max_| ocks() method may fail and return one of the following non-zero errors:

EINVAL

The method was called on an environment which had been opened without being configured for locking.
Class

DB_ENV, DB_LOCK
See Also

Locking Subsystem and Related Methods, DB_ENV->set_lk_max_locks()

4/12/2010 DB C API Page 283

DB_ENV->get_lk_max_objects()

DB_ENV->get_Ilk_max_objects()

#i ncl ude <db. h>

i nt
DB_ENV->get | k_max_obj ect s(DB_ENV *dbenv, u_int32_t *|k_maxp);

The DB_ENV->get | k_max_obj ect s() method returns the maximum number of locked objects. You can
configure this using the DB_ENV->set_lk_max_objects() method.

The DB_ENV->get | k_max_obj ect s() method may be called at any time during the life of the application.

The DB_ENV- >get | k_max_obj ect s() method returns a non-zero error value on failure and 0 on success.
Parameters

Ik_maxp

The DB_ENV- >get _| k_nmax_obj ect s() method returns the maximum number of potentially locked objects
in lk_maxp.

Errors
The DB_ENV- >get _| k_max_obj ect s() method may fail and return one of the following non-zero errors:
EINVAL
The method was called on an environment which had been opened without being configured for locking.
Class
DB_ENV, DB_LOCK
See Also

Locking Subsystem and Related Methods, DB_ENV->set_lk_max_objects()

4/12/2010 DB C API Page 284

DB_ENV->get_lk_partitions()

DB_ENV->get_Ilk_partitions()

#i ncl ude <db. h>

i nt
DB _ENV->get |k partitions(DB _ENV *dbenv, u_int32_t *lk partitions);

The DB_ENV->get |k partitions() method returns the number of lock table partitions used in the
Berkeley DB environment. You can configure this using the DB_ENV->set_lk_partitions() method.

The DB_ENV->get | k_partitions() method may be called at any time during the life of the application.

The DB_ENV->get |k _partitions() method returns a non-zero error value on failure and 0 on success.
Parameters

Ik_partitions

The DB_ENV->get | k_partitions() method returns the number of partitions in lk_partitions.
Errors

The DB_ENV->get _| k_partitions() method may fail and return one of the following non-zero errors:

EINVAL

The method was called on an environment which had been opened without being configured for locking.
Class

DB_ENV, DB_LOCK
See Also

Locking Subsystem and Related Methods, DB_ENV->set_lk_partitions()

4/12/2010 DB C API Page 285

DB_ENV->set_Lk_conflicts()

DB_ENV->set_Ilk_conflicts()

#i ncl ude <db. h>

i nt
DB _ENV->set | k_conflicts(DB_ENV *dbenv,
u_int8_t *conflicts, int nnodes);
Set the locking conflicts matrix.

If DB_ENV->set | k_conflicts() is never called, a standard conflicts array is used; see Standard Lock
Modes for more information.

The DB_ENV->set _| k_conflicts() method configures a database environment, not only operations
performed using the specified DB_ENV handle.

The DB_ENV->set _| k_conflicts() method may not be called after the DB_ENV->open() method is called.
If the database environment already exists when DB_ENV->open() is called, the information specified
to DB _ENV->set |k _conflicts() will be ignored.

The DB_ENV->set _| k_conflicts() method returns a non-zero error value on failure and 0 on success.

Parameters

Errors

conflicts
The conflicts parameter is the new locking conflicts matrix. The conflicts parameter is an nmodes by

nmodes array. A non-0 value for the array element indicates that requested_mode and held_mode
conflict:

conflicts[requested node][hel d_node]
The not-granted mode must be represented by 0.
nmodes

The nmodes parameter is the size of the lock conflicts matrix.

The DB_ENV->set | k_conflicts() method may fail and return one of the following non-zero errors:
EINVAL

If the method was called after DB_ENV->open() was called; or if an invalid flag value or parameter was
specified.

ENOMEM

The conflicts array could not be copied.

4/12/2010

DB C API Page 286

../../programmer_reference/lock_stdmode.html
../../programmer_reference/lock_stdmode.html

DB_ENV->set_lk_conflicts()

Class
DB_ENV, DB_LOCK
See Also

Locking Subsystem and Related Methods

4/12/2010 DB C API Page 287

DB_ENV->set_lk_detect()

DB_ENV->set_lk_detect()

#i ncl ude <db. h>

i nt
DB _ENV->set | k_detect (DB_ENV *dbenv, u_int32_t detect);

Set if the deadlock detector is to be run whenever a lock conflict occurs, and specify what lock request(s)
should be rejected. As transactions acquire locks on behalf of a single locker ID, rejecting a lock request
associated with a transaction normally requires the transaction be aborted.

The database environment's deadlock detector configuration may also be configured using the
environment's DB_CONFIG file. The syntax of the entry in that file is a single line with the string
"set_Lk_detect”, one or more whitespace characters, and the method detect parameter as a string; for
example, "set_lk_detect DB_LOCK_OLDEST". Because the DB_CONFIG file is read when the database
environment is opened, it will silently overrule configuration done before that time.

The DB_ENV- >set | k_det ect () method configures a database environment, not only operations performed
using the specified DB_ENV handle.

The DB_ENV->set | k_det ect () method may be called at any time during the life of the application.

The DB_ENV->set _| k_det ect () method returns a non-zero error value on failure and 0 on success.

Parameters

detect

The detect parameter configures the deadlock detector. The specified value must be one of the
following list:

« DB_LOCK_DEFAULT

Use whatever lock policy was specified when the database environment was created. If no lock policy
has yet been specified, set the lock policy to DB_LOCK_RANDOM.

« DB_LOCK_EXPI RE
Reject lock requests which have timed out. No other deadlock detection is performed.
« DB LOCK_MAXLOCKS
Reject the lock request for the locker ID with the most locks.
« DB_LOCK_MAXVRI TE
Reject the lock request for the locker ID with the most write locks.
« DB_LOCK_M NLOCKS

Reject the lock request for the locker ID with the fewest locks.

4/12/2010

DB C API Page 288

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

DB_ENV->set_lk_detect()

« DB_LOCK_M NWRI TE
Reject the lock request for the locker ID with the fewest write locks.
« DB LOCK_OLDEST
Reject the lock request for the locker ID with the oldest lock.
« DB_LOCK_RANDOM
Reject the lock request for a random locker ID.
« DB_LOCK_YOUNGEST
Reject the lock request for the locker ID with the youngest lock.
Errors
The DB_ENV->set | k_det ect () method may fail and return one of the following non-zero errors:
EINVAL
An invalid flag value or parameter was specified.
Class
DB_ENV, DB_LOCK
See Also

Locking Subsystem and Related Methods

4/12/2010 DB C API Page 289

DB_ENV->set_Lk_max_lockers()

DB_ENV->set_Ilk_max_lockers()

#i ncl ude <db. h>

i nt
DB _ENV->set | k_max_| ockers(DB_ENV *dbenv, u_int32_t max);

Set the maximum number of locking entities supported by the Berkeley DB environment. This value is
used by DB_ENV->open() to estimate how much space to allocate for various lock-table data structures.
The default value is 1000 lockers. For specific information on configuring the size of the lock subsystem,
see Configuring locking: sizing the system.

The database environment's maximum number of lockers may also be configured using the environment's
DB_CONFIG file. The syntax of the entry in that file is a single line with the string "set_lk_max_lockers",
one or more whitespace characters, and the number of lockers. Because the DB_CONFIG file is read

when the database environment is opened, it will silently overrule configuration done before that time.

The DB_ENV->set | k_max_| ockers() method configures a database environment, not only operations
performed using the specified DB_ENV handle.

The DB_ENV->set _| k_max_I ockers() method may not be called after the DB_ENV->open() method is
called. If the database environment already exists when DB_ENV->open() is called, the information
specified to DB_ENV->set | k_max_| ockers() will be ignored.

The DB_ENV- >set _| k_max_| ockers() method returns a non-zero error value on failure and 0 on success.

Parameters

Errors

Class

max

The max parameter is the maximum number simultaneous locking entities supported by the Berkeley
DB environment.

The DB_ENV->set | k_max_| ocker s() method may fail and return one of the following non-zero errors:
EINVAL

If the method was called after DB_ENV->open() was called; or if an invalid flag value or parameter was
specified.

DB_ENV, DB_LOCK

See Also

Locking Subsystem and Related Methods

4/12/2010

DB C API Page 290

../../programmer_reference/lock_max.html
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

DB_ENV->set_lk_max_locks()

DB_ENV->set_lk_max_locks()

#i nclude <db. h>
i nt
DB_ENV->set | k_max_| ocks(DB_ENV *dbenv, u_int32_t max);

Set the maximum number of locks supported by the Berkeley DB environment. This value is used by
DB_ENV->open() to estimate how much space to allocate for various lock-table data structures. The
default value is 1000 locks. For specific information on configuring the size of the lock subsystem, see
Configuring locking: sizing the system.

The database environment's maximum number of locks may also be configured using the environment's
DB_CONFIG file. The syntax of the entry in that file is a single line with the string "set_lk_max_locks",
one or more whitespace characters, and the number of locks. Because the DB_CONFIG file is read when
the database environment is opened, it will silently overrule configuration done before that time.

The DB_ENV->set | k_max_| ocks() method configures a database environment, not only operations
performed using the specified DB_ENV handle.

The DB_ENV- >set | k_max_| ocks() method may not be called after the DB_ENV->open() method is called.
If the database environment already exists when DB_ENV->open() is called, the information specified
to DB_ENV- >set | k_max_| ocks() will be ignored.

The DB_ENV- >set _| k_max_| ocks() method returns a non-zero error value on failure and 0 on success.
Parameters
max

The max parameter is the maximum number of locks supported by the Berkeley DB environment.

Errors

The DB_ENV->set | k_max_| ocks() method may fail and return one of the following non-zero errors:

EINVAL
If the method was called after DB_ENV->open() was called; or if an invalid flag value or parameter was
specified.
Class
DB_ENV, DB_LOCK
See Also

Locking Subsystem and Related Methods

4/12/2010 DB C API Page 291

../../programmer_reference/lock_max.html
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

DB_ENV->set_lk_max_objects()

DB_ENV->set_lk_max_objects()

#i ncl ude <db. h>

i nt
DB _ENV->set | k_max_obj ect s(DB_ENV *dbenv, u_int32_t max);

Set the maximum number of locked objects supported by the Berkeley DB environment. This value is
used by DB_ENV->open() to estimate how much space to allocate for various lock-table data structures.
The default value is 1000 objects. For specific information on configuring the size of the lock subsystem,
see Configuring locking: sizing the system.

The database environment's maximum number of objects may also be configured using the environment's
DB_CONFIG file. The syntax of the entry in that file is a single line with the string "set_lk_max_objects",
one or more whitespace characters, and the number of objects. Because the DB_CONFIG file is read

when the database environment is opened, it will silently overrule configuration done before that time.

The DB_ENV->set | k_max_obhj ect s() method configures a database environment, not only operations
performed using the specified DB_ENV handle.

The DB_ENV- >set _| k_max_obj ect s() method may not be called after the DB_ENV->open() method is
called. If the database environment already exists when DB_ENV->open() is called, the information
specified to DB_ENV->set | k_max_obj ect s() will be ignored.

The DB_ENV- >set _| k_max_obj ect s() method returns a non-zero error value on failure and 0 on success.

Parameters

Errors

Class

max

The max parameter is the maximum number of locked objects supported by the Berkeley DB
environment.

The DB_ENV->set | k_max_obj ect s() method may fail and return one of the following non-zero errors:
EINVAL

If the method was called after DB_ENV->open() was called; or if an invalid flag value or parameter was
specified.

DB_ENV, DB_LOCK

See Also

Locking Subsystem and Related Methods

4/12/2010

DB C API Page 292

../../programmer_reference/lock_max.html
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

DB_ENV->set_lk_partitions()

DB_ENV->set_lk_partitions()

#i ncl ude <db. h>

i nt
DB ENV->set | k_partitions(DB_ENV *dbenv, u_int32_t partitions);

Set the number of lock table partitions in the Berkeley DB environment. The default value is 10 times
the number of CPUs on the system if there is more than one CPU. Increasing the number of partitions
can provide for greater throughput on a system with multiple CPUs and more than one thread contending
for the lock manager. On single processor systems more than one partition may increase the overhead
of the lock manager. Systems often report threading contexts as CPUs. If your system does this, set
the number of partitions to 1 to get optimal performance.

The database environment's number of partitions may also be configured using the environment's

DB_CONFIG file. The syntax of the entry in that file is a single line with the string "set_lk_partitions”,
one or more whitespace characters, and the number of partitions. Because the DB_CONFIG file is read
when the database environment is opened, it will silently overrule configuration done before that time.

The DB_ENV->set |k _partitions() method configures a database environment, not only operations
performed using the specified DB_ENV handle.

The DB_ENV->set | k_partitions() method may not be called after the DB_ENV->open() method is
called. If the database environment already exists when DB_ENV->open() is called, the information
specified to DB _ENV->set | k_partitions() will be ignored.

The DB_ENV->set | k_partitions() method returns a non-zero error value on failure and 0 on success.

Parameters

Errors

Class

partitions

The partitions parameter is the number of partitions to be configured in the Berkeley DB environment.

The DB_ENV->set |k _partitions() method may fail and return one of the following non-zero errors:
EINVAL

If the method was called after DB_ENV->open() was called; or if an invalid flag value or parameter was
specified.

DB_ENV, DB_LOCK

See Also

Locking Subsystem and Related Methods

4/12/2010

DB C API Page 293

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

DB_ENV->lock_detect()

DB_ENV->lock_detect()

#i ncl ude <db. h>

int
DB_ENV->| ock_det ect (DB_ENV *env,
u_int32_t flags, u_int32_t atype, int *rejected);

The DB_ENV- >l ock_det ect () method runs one iteration of the deadlock detector. The deadlock detector
traverses the lock table and marks one of the participating lock requesters for rejection in each deadlock
it finds.

The DB_ENV- >| ock_det ect () method is the underlying method used by the db_deadlock utility. See the
db_deadlock utility source code for an example of using DB_ENV- >l ock_det ect () in a IEEE/ANSI Std
1003.1 (POSIX) environment.

The DB_ENV- >l ock_det ect () method returns a non-zero error value on failure and 0 on success.

Parameters

rejected

If the rejected parameter is non-NULL, the memory location to which it refers will be set to the number
of lock requests that were rejected.

atype

The atype parameter specifies which lock request(s) to reject. It must be set to one of the following
list:

« DB_LOCK_DEFAULT

Use whatever lock policy was specified when the database environment was created. If no lock policy
has yet been specified, set the lock policy to DB_LOCK_RANDOM.

« DB_LOCK_EXPI RE
Reject lock requests which have timed out. No other deadlock detection is performed.
« DB_LOCK_MAXLOCKS
Reject the lock request for the locker ID with the most locks.
« DB LOCK_MAXVRI TE
Reject the lock request for the locker ID with the most write locks.
« DB_LOCK_M NLOCKS

Reject the lock request for the locker ID with the fewest locks.

4/12/2010

DB C API Page 294

DB_ENV->lock_detect()

« DB_LOCK_M NWRI TE
Reject the lock request for the locker ID with the fewest write locks.
« DB LOCK_OLDEST
Reject the lock request for the locker ID with the oldest lock.
« DB_LOCK_RANDOM
Reject the lock request for a random locker ID.
o DB _LOCK_YOUNGEST
Reject the lock request for the locker ID with the youngest lock.
flags
The flags parameter is currently unused, and must be set to 0.
Errors
The DB_ENV- >l ock_det ect () method may fail and return one of the following non-zero errors:
EINVAL
An invalid flag value or parameter was specified.
Class
DB_ENV, DB_LOCK
See Also

Locking Subsystem and Related Methods

4/12/2010 DB C API Page 295

DB_ENV->lock_get()

DB_ENV->lock_get()

#i ncl ude <db. h>

i nt

DB_ENV->| ock_get (DB_ENV *env, u_int32_t |ocker,
u_int32_t flags, const DBT *object,
const db_| ocknmode_t |ock_rmode, DB LOCK *I| ock);

The DB_ENV->| ock_get () method acquires a lock from the lock table, returning information about it in
the lock parameter.

The DB_ENV- >l ock_get () method returns a non-zero error value on failure and 0 on success.

Parameters

locker

The locker parameter is an unsigned 32-bit integer quantity. It represents the entity requesting the
lock.

flags
The flags parameter must be set to 0 or the following value:
« DB LOCK_NOVAI T

If a lock cannot be granted because the requested lock conflicts with an existing lock, return
DB_LOCK_NOTGRANTED immediately instead of waiting for the lock to become available.

object

The object parameter is an untyped byte string that specifies the object to be locked. Applications
using the locking subsystem directly while also doing locking via the Berkeley DB access methods must
take care not to inadvertently lock objects that happen to be equal to the unique file IDs used to lock
files. See Access method locking conventions in the Berkeley DB Programmer's Reference Guide for
more information.

lock_mode

The lock_mode parameter is used as an index into the environment's lock conflict matrix. When using
the default lock conflict matrix, lock_mode must be set to one of the following values:

+ DB_LOCK_READ
read (shared)
« DB LOCK WRI TE

write (exclusive)

4/12/2010

DB C API Page 296

../../programmer_reference/lock_am_conv.html

DB_ENV->lock_get()

Errors

Class

« DB_LOCK_| VR TE
intention to write (shared)

« DB_LOCK_| READ
intention to read (shared)

« DB_LOCK | WR
intention to read and write (shared)

See DB_ENV->set_lk_conflicts() and Standard Lock Modes for more information on the lock conflict
matrix.

lock

The DB_ENV- >l ock_get () method returns the lock information in lock.

The DB_ENV- >l ock_get () method may fail and return one of the following non-zero errors:
DB_LOCK_DEADLOCK

A transactional database environment operation was selected to resolve a deadlock.
DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was unable
to grant a lock in the allowed time.

DB_LOCK_NOTGRANTED

The DB_LOCK_NOWAIT flag or lock timers were configured and the lock could not be granted before
the wait-time expired.

EINVAL

An invalid flag value or parameter was specified.

EINVAL

The method was called on an environment which had been opened without being configured for locking.
ENOMEM

The maximum number of locks has been reached.

DB_ENV, DB_LOCK

4/12/2010

DB C API Page 297

../../programmer_reference/lock_stdmode.html

DB_ENV->lock_get()

See Also

Locking Subsystem and Related Methods

4/12/2010 DB C API Page 298

DB_ENV->lock_id()

DB_ENV->lock_id()

#i ncl ude <db. h>

i nt
DB_ENV->l ock i d(DB_ENV *env, u_int32_t *idp);

The DB_ENV- >l ock_i d() method copies a locker ID, which is guaranteed to be unique in the environment's
lock table, into the memory location to which idp refers.

The DB_ENV->lock_id_free() method should be called to return the locker ID to the Berkeley DB library
when it is no longer needed.

The DB_ENV->| ock_i d() method returns a non-zero error value on failure and 0 on success.
Parameters

idp

The idp parameter references memory into which the allocated locker ID is copied.
Class

DB_ENV, DB_LOCK
See Also

Locking Subsystem and Related Methods

4/12/2010 DB C API Page 299

DB_ENV->lock_id_free()

DB_ENV->lock_id_free()
#incl ude <db. h>

i nt
DB ENV->l ock_id_free(DB_ENV *env, u_int32_t id);
The DB_ENV->| ock_i d_free() method frees a locker ID allocated by the DB_ENV->lock_id() method.

The DB_ENV- >l ock_i d_free() method returns a non-zero error value on failure and 0 on success.

Parameters
id
The id parameter is the locker id to be freed.

Errors

The DB_ENV- >l ock_i d_free() method may fail and return one of the following non-zero errors:

EINVAL

If the locker ID is invalid or locks are still held by this locker ID; or if an invalid flag value or parameter
was specified.

Class
DB_ENV, DB_LOCK

See Also

Locking Subsystem and Related Methods

4/12/2010 DB C API Page 300

DB_ENV->lock_put()

DB_ENV->lock_put()

#i ncl ude <db. h>

i nt
DB_ENV->| ock_put (DB_ENV *env, DB LOCK *I ocKk);

The DB_ENV- >l ock_put () method releases lock.
The DB_ENV- >l ock_put () method returns a non-zero error value on failure and 0 on success.
Parameters
lock
The lock parameter is the lock to be released.
Errors
The DB_ENV- >l ock_put () method may fail and return one of the following non-zero errors:
EINVAL
An invalid flag value or parameter was specified.
Class
DB_ENV, DB_LOCK
See Also

Locking Subsystem and Related Methods

4/12/2010 DB C API Page 301

DB_ENV->lock_stat()

DB_ENV->lock_stat()

#i ncl ude <db. h>

i nt
DB_ENV->| ock_stat (DB_ENV *env, DB _LOCK STAT **statp, u_int32_t flags);

The DB_ENV->| ock_st at () method returns the locking subsystem statistics.

The DB_ENV->| ock_st at () method creates a statistical structure of type DB_LOCK_STAT and copies a
pointer to it into a user-specified memory location.

Statistical structures are stored in allocated memory. If application-specific allocation routines have
been declared (see DB_ENV->set_alloc() for more information), they are used to allocate the memory;
otherwise, the standard C library malloc(3) is used. The caller is responsible for deallocating the
memory. To deallocate the memory, free the memory reference; references inside the returned memory
need not be individually freed.

The following DB_LOCK_STAT fields will be filled in:
e u_int32_t st_id;
The last allocated locker ID.
e u_int32_t st_cur_maxid;
The current maximum unused locker ID.
« int st_nmodes;
The number of lock modes.
e u_int32_t st_maxlocks;
The maximum number of locks possible.
e u_int32_t st_maxlockers;
The maximum number of lockers possible.
e u_int32_t st_maxobjects;
The maximum number of lock objects possible.
e u_int32_t st_partitions;
The number of lock table partitions.
e u_int32_t st_nlocks;

The number of current locks.

4/12/2010

DB C API Page 302

DB_ENV->lock_stat()

u_int32_t st_maxnlocks;

The maximum number of locks at any one time. Note that if there is more than one partition, this
is the sum of the maximum across all partitions.

u_int32_t st_maxhlocks;

The maximum number of locks in any hash bucket at any one time.
uintmax_t st_locksteals;

The maximum number of locks stolen by an empty partition.
uintmax_t st_maxIsteals;

The maximum number of lock steals for any one partition.
u_int32_t st_nlockers;

The number of current lockers.

u_int32_t st_maxnlockers;

The maximum number of lockers at any one time.
u_int32_t st_nobjects;

The number of current lock objects.

u_int32_t st_maxnobjects;

The maximum number of lock objects at any one time. Note that if there is more than one partition
this is the sum of the maximum across all partitions.

u_int32_t st_maxhobjects;

The maximum number of objects in any hash bucket at any one time.
uintmax_t st_objectsteals;

The maximum number of objects stolen by an empty partition.
uintmax_t st_maxosteals;

The maximum number of object steals for any one partition.
uintmax_t st_nrequests;

The total number of locks requested.

uintmax_t st_nreleases;

The total number of locks released.

4/12/2010

DB C API Page 303

DB_ENV->lock_stat()

uintmax_t st_nupgrade;

The total number of locks upgraded.
uintmax_t st_ndowngrade;

The total number of locks downgraded.
uintmax_t st_lock_wait;

The number of lock requests not immediately available due to conflicts, for which the thread of
control waited.

uintmax_t st_lock_nowait;

The number of lock requests not immediately available due to conflicts, for which the thread of
control did not wait.

uintmax_t st_ndeadlocks;

The number of deadlocks.

db_timeout_t st_locktimeout;

Lock timeout value.

uintmax_t st_nlocktimeouts;

The number of lock requests that have timed out.
u_int32_t st_txntimeout;

Transaction timeout value.

uintmax_t st_ntxntimeouts;

The number of transactions that have timed out. This value is also a component of st_ndeadlocks,
the total number of deadlocks detected.

uintmax_t st_objs_wait;
The number of requests to allocate or deallocate an object for which the thread of control waited.
uintmax_t st_objs_nowait;

The number of requests to allocate or deallocate an object for which the thread of control did not
wait.

uintmax_t st_lockers_wait;
The number of requests to allocate or deallocate a locker for which the thread of control waited.

uintmax_t st_lockers_nowait;

4/12/2010

DB C API Page 304

DB_ENV->lock_stat()

The number of requests to allocate or deallocate a locker for which the thread of control did not
wait.

e u_int32_t st_hash_len;

Maximum length of a lock hash bucket.
« roff_t st_regsize;

The size of the lock region, in bytes.
« uintmax_t st_part_wait;

The number of times that a thread of control was forced to wait before obtaining the lock partition
mutex.

o uintmax_t st_part_nowait;

The number of times that a thread of control was able to obtain the lock partition mutex without
waiting.

o uintmax_t st_part_max_wait;

The maximum number of times that a thread of control was forced to wait before obtaining any one
lock partition mutex.

« uintmax_t st_part_max_nowait;

The number of times that a thread of control was able to obtain any one lock partition mutex without
waiting.

» uintmax_t st_region_wait;

The number of times that a thread of control was forced to wait before obtaining the lock region
mutex.

« uintmax_t st_region_nowait;

The number of times that a thread of control was able to obtain the lock region mutex without
waiting.

The DB_ENV- >l ock_stat () method may not be called before the DB_ENV->open() method is called.

The DB_ENV- >l ock_st at () method returns a non-zero error value on failure and 0 on success.
Parameters

flags

The flags parameter must be set to 0 or the following value:

« DB _STAT CLEAR

4/12/2010 DB C API Page 305

DB_ENV->lock_stat()

Reset statistics after returning their values.

statp

The statp parameter references memory into which a pointer to the allocated statistics structure is
copied.

Errors
The DB_ENV- >l ock_stat () method may fail and return one of the following non-zero errors:
EINVAL
An invalid flag value or parameter was specified.

Class

DB_ENV, DB_LOCK

See Also

Locking Subsystem and Related Methods

4/12/2010 DB C API Page 306

DB_ENV->lock_stat_print()

DB_ENV->lock_stat_print()

#i ncl ude <db. h>

int

DB_ENV->| ock_stat _print(DB_ENV *env, u_int32_t flags);
The DB_ENV- >l ock_stat _print() method displays the locking subsystem statistical information, as
described for the DB_ENV- >| ock_st at () method. The information is printed to a specified output channel

(see the DB_ENV->set_msgfile() method for more information), or passed to an application callback
function (see the DB_ENV->set_msgcall() method for more information).

The DB_ENV- >l ock_stat _print() method may not be called before the DB_ENV->open() method is
called.

The DB_ENV- >l ock_stat _print() method returns a non-zero error value on failure and 0 on success.

Parameters

Class

flags

The flags parameter must be set to 0 or by bitwise inclusively OR'ing together one or more of the
following values:

o DB STAT ALL
Display all available information.
o DB STAT CLEAR

Reset statistics after displaying their values.

DB_STAT_LOCK_CONF

Display the lock conflict matrix.

DB_STAT_LOCK_LOCKERS

Display the lockers within hash chains.

DB_STAT LOCK_OBJECTS

Display the lock objects within hash chains.

DB_STAT_LOCK_PARAMB

Display the locking subsystem parameters.

DB_ENV, DB_LOCK

4/12/2010

DB C API Page 307

DB_ENV->lock_stat_print()

See Also

Locking Subsystem and Related Methods

4/12/2010 DB C API Page 308

DB_ENV->lock_vec()

DB_ENV->lock_vec()

#i ncl ude <db. h>

i nt
DB_ENV->| ock_vec(DB_ENV *env, u_int32_t locker, u_int32_t flags,
DB_LOCKREQ Iist[], int nlist, DB_LOCKREQ **elistp);

The DB_ENV->| ock_vec() method atomically obtains and releases one or more locks from the lock table.
The DB_ENV- >l ock_vec() method is intended to support acquisition or trading of multiple locks under
one lock table semaphore, as is needed for lock coupling or in multigranularity locking for lock escalation.

If any of the requested locks cannot be acquired, or any of the locks to be released cannot be released,
the operations before the failing operation are guaranteed to have completed successfully, and
DB_ENV- >l ock_vec() returns a non-zero value. In addition, if elistp is not NULL, it is set to point to the
DB_LOCKREQ entry that was being processed when the error occurred.

Unless otherwise specified, the DB_ENV- >l ock_vec() method returns a non-zero error value on failure
and 0 on success.

Parameters

elistp

If an error occurs, and the elistp parameter is non-NULL, it is set to point to the DB_LOCKREQ entry
that was being processed when the error occurred.

flags
The flags parameter must be set to 0 or the following value:
o DB LOCK NOWAIT

If a lock cannot be granted because the requested lock conflicts with an existing lock, return
DB_LOCK_NOTGRANTED immediately instead of waiting for the lock to become available. In this
case, if non-NULL, elistp identifies the request that was not granted.

locker

The locker parameter is an unsigned 32-bit integer quantity. It represents the entity requesting or
releasing the lock.

list
The list array provided to DB_ENV->| ock_vec() is typedef'd as DB_LOCKREQ.

To ensure compatibility with future releases of Berkeley DB, all fields of the DB_LOCKREQ structure
that are not explicitly set should be initialized to 0 before the first time the structure is used. Do this
by declaring the structure external or static, or by calling memset(3).

A DB_LOCKREQ structure has at least the following fields:

4/12/2010

DB C API Page 309

DB_ENV->lock_vec()

e | ockop_t op;

The operation to be performed, which must be set to one of the following values:

DB_LOCK_GET

Get the lock defined by the values of the mode and obj structure fields, for the specified locker.
Upon return from DB_ENV- >| ock_vec(), if the lock field is non-NULL, a reference to the acquired
lock is stored there. (This reference is invalidated by any call to DB_ENV- >l ock_vec() or
DB_ENV->lock_put() that releases the lock.)

DB_LOCK_GET_TI MEQUT

Identical to DB_LOCK_GET except that the value in the timeout structure field overrides any
previously specified timeout value for this lock. A value of 0 turns off any previously specified
timeout.

DB_LOCK_PUT

The lock to which the lock structure field refers is released. The locker parameter, and mode and
obj fields are ignored.

DB_LOCK_PUT_ALL

All locks held by the specified locker are released. The lock, mode, and obj structure fields are
ignored. Locks acquired in operations performed by the current call to DB_ENV->| ock_vec() which
appear before the DB_LOCK_PUT_ALL operation are released; those acquired in operations appearing
after the DB_LOCK_PUT_ALL operation are not released.

DB_LOCK_PUT_OBJ

All locks held on obj are released. The locker parameter and the lock and mode structure fields
are ignored. Locks acquired in operations performed by the current call to DB_ENV- >l ock_vec()
that appear before the DB_LOCK_PUT_OBJ operation are released; those acquired in operations
appearing after the DB_LOCK_PUT_OBJ operation are not released.

DB_LOCK_TI MEQUT

Cause the specified locker to timeout immediately. If the database environment has not configured
automatic deadlock detection, the transaction will timeout the next time deadlock detection is
performed. As transactions acquire locks on behalf of a single locker ID, timing out the locker ID
associated with a transaction will time out the transaction itself.

« DB LOCK | ock;

A lock reference.

e const |ocknode t node;

The lock mode, used as an index into the environment's lock conflict matrix. When using the default
lock conflict matrix, mode must be set to one of the following values:

4/12/2010

DB C API Page 310

DB_ENV->lock_vec()

Errors

« DB_LOCK_READ
read (shared)
« DB_LOCK WRI TE
write (exclusive)
« DB_LOCK | WRI TE
intention to write (shared)
« DB_LOCK | READ
intention to read (shared)
« DB_LOCK | WR
intention to read and write (shared)

See DB_ENV->set_lk_conflicts() and Standard Lock Modes for more information on the lock conflict
matrix.

» const DBT obj;

An untyped byte string that specifies the object to be locked or released. Applications using the
locking subsystem directly while also doing locking via the Berkeley DB access methods must take
care not to inadvertently lock objects that happen to be equal to the unique file IDs used to lock
files. See Access method locking conventions in the Berkeley DB Programmer’s Reference Guide for
more information.

e u_int32_t timeout;
The lock timeout value.
nlist

The nlist parameter specifies the number of elements in the list array.

The DB_ENV- >l ock_vec() method may fail and return one of the following non-zero errors:
DB_LOCK_DEADLOCK

A transactional database environment operation was selected to resolve a deadlock.
DB_LOCK_NOTGRANTED

A Berkeley DB Concurrent Data Store database environment configured for lock timeouts was unable
to grant a lock in the allowed time.

4/12/2010

DB C API Page 311

../../programmer_reference/lock_stdmode.html
../../programmer_reference/lock_am_conv.html

DB_ENV->lock_vec()

DB_LOCK_NOTGRANTED

The DB_LOCK_NOWAIT flag or lock timers were configured and the lock could not be granted before
the wait-time expired.

EINVAL
An invalid flag value or parameter was specified.
ENOMEM

The maximum number of locks has been reached.

Class
DB_ENV, DB_LOCK

See Also

Locking Subsystem and Related Methods

4/12/2010 DB C API Page 312

Chapter 7. The DB_LSN Handle

#i ncl ude <db. h>

typedef struct _ typedef struct _ db |sn DB _LSN;

The DB_LSN object is a log sequence number which specifies a unique location in a log file. A DB_LSN
consists of two unsigned 32-bit integers -- one specifies the log file number, and the other specifies
an offset in the log file.

4/12/2010 DB C API Page 313

Logging Subsystem and Related
Methods

Logging Subsystem and Related Methods

Logging Subsystem and Related
Methods

Description

DB_ENV->log_archive()

List log and database files

DB_ENV->log_file()

Map Log Sequence Numbers to log files

DB_ENV->log_flush()

Flush log records

DB_ENV->log_printf()

Append informational message to the log

DB_ENV->log_put()

Write a log record

DB_ENV->log_stat()

Return log subsystem statistics

DB_ENV->log_stat_print()

Print log subsystem statistics

log_compare

Compare two Log Sequence Numbers

Logging Subsystem Cursors

DB_ENV->log_cursor()

Create a log cursor handle

The DB_LOGC Handle

A log cursor handle

DB_LOGC->close()

Close a log cursor

DB_LOGC->get()

Retrieve a log record

Logging Subsystem Configuration

DB_ENV->log_set_config(),
DB_ENV->log_get_config()

Configure the logging subsystem

DB_ENV->set_lg_bsize(), DB_ENV->get_lg_bsize()

Set/get log buffer size

DB_ENV->set_lg_dir(), DB_ENV->get_lg_dir()

Set/get the environment logging directory

DB_ENV->set_lg_filemode(),
DB_ENV->get_lg_filemode()

Set/get log file mode

DB_ENV->set_lg_max(), DB_ENV->get_lg_max()

Set/get log file size

DB_ENV->set_lg_regionmax(),
DB_ENV->get_lg_regionmax()

Set/get logging region size

DB C API

Page 314

DB_ENV->get_lg_bsize()

DB_ENV->get_Ilg_bsize()

#i ncl ude <db. h>

i nt
DB _ENV->get | g_bsi ze(DB_ENV *dbenv, u_int32_t *|g_bsizep);

The DB_ENV->get | g _bsi ze() method returns the size of the log buffer, in bytes. You can manage this
value using the DB_ENV->set_lg_bsize() method.

The DB_ENV->get | g bsi ze() method may be called at any time during the life of the application.

The DB_ENV->get | g _bsi ze() method returns a non-zero error value on failure and 0 on success.
Parameters

Ig_bsizep

The DB_ENV- >get _| g_bsi ze() method returns the size of the log buffer, in bytes in lg_bsizep.
Class

DB_ENV, DB_LOGC, DB_LSN
See Also

Logging Subsystem and Related Methods, DB_ENV->set_lg_bsize()

4/12/2010 DB C API Page 315

DB_ENV->get_lg_dir()

DB_ENV->get_Ig_dir()

#i ncl ude <db. h>

int
DB _ENV->get | g_dir(DB_ENV *dbenv, const char **dirp);

The DB_ENV->get | g dir() method returns the log directory, which is the location for logging files.
You can manage this value using the DB_ENV->set_lg_dir() method.

The DB_ENV->get | g dir() method may be called at any time during the life of the application.
The DB_ENV->get | g dir() method returns a non-zero error value on failure and 0 on success.
Parameters
dirp
The DB_ENV->get _| g_dir() method returns a reference to the log directory in dirp.
Class
DB_ENV, DB_LOGC, DB_LSN
See Also

Logging Subsystem and Related Methods, DB_ENV->set_lg_dir()

4/12/2010 DB C API Page 316

DB_ENV->get_lg_filemode()

DB_ENV->get_lIlg_filemode()

#i ncl ude <db. h>

int
DB_ENV->get | g fil enode(DB_ENV *dbenv, int *|g_nodep);

The DB_ENV->set | g filenode() method returns the log file mode. You can manage this value using
the DB_ENV->set_lg_filemode() method.

The DB_ENV->set | g filenode() method may be called at any time during the life of the application.
The DB_ENV->set | g fil enpde() method returns a non-zero error value on failure and 0 on success.
Parameters
Ilg_modep
The DB_ENV->set | g fil emnde() method returns the log file mode in Ig_modep.
Class
DB_ENV, DB_LOGC, DB_LSN
See Also

Logging Subsystem and Related Methods, DB_ENV->set_lg_filemode()

4/12/2010 DB C API Page 317

DB_ENV->get_lg_max()

DB_ENV->get_Ilg_max()

#i ncl ude <db. h>

i nt
DB_ENV->get | g_nmax(DB_ENV *dbenv, u_int32_t *|g_maxp);

The DB_ENV- >get | g_nmax() method returns the maximum log file size. You can manage this value using
the DB_ENV->set_lg_max() method.

The DB_ENV->get | g _max() method may be called at any time during the life of the application.
The DB_ENV->get | g _max() method returns a non-zero error value on failure and 0 on success.

Parameters
Ilg_maxp

The DB_ENV->get | g_max() method returns the maximum log file size in Ig_maxp.

Class

DB_ENV, DB_LOGC, DB_LSN
See Also

Logging Subsystem and Related Methods, DB_ENV->set_lg_max()
4/12/2010 DB C API

Page 318

DB_ENV->get_lg_regionmax()

DB_ENV->get_Ilg_regionmax()

#i ncl ude <db. h>

int
DB_ENV->get | g_regi onmax(DB_ENV *dbenv, u_int32_t *|g_regi onmaxp);

The DB_ENV->get | g regi onmax() method returns the size of the underlying logging subsystem region.
You can manage this value using the DB_ENV->set_lg_regionmax() method.

The DB_ENV- >get | g_regi onmax() method may be called at any time during the life of the application.

The DB_ENV->get | g regi onmax() method returns a non-zero error value on failure and 0 on success.
Parameters

Ig_regionmaxp

The DB_ENV- >get _| g_regi onmax() method returns the size of the underlying logging subsystem region
in Ig_regionmaxp.

Class
DB_ENV, DB_LOGC, DB_LSN
See Also

Logging Subsystem and Related Methods, DB_ENV->set_lg_regionmax()

4/12/2010 DB C API Page 319

DB_ENV->log_archive()

DB_ENV->log_archive()

#i ncl ude <db. h>

int
DB_ENV->| og_archive(DB_ENV *env, char *(*listp)[], u_int32_t flags);

The DB_ENV- >l og_ar chi ve() method returns an array of log or database filenames.

By default, DB_ENV- >l og_ar chi ve() returns the names of all of the log files that are no longer in use
(for example, that are no longer involved in active transactions), and that may safely be archived for
catastrophic recovery and then removed from the system. If there are no filenames to return, the
memory location to which listp refers will be set to NULL.

Arrays of log filenames are stored in allocated memory. If application-specific allocation routines have
been declared (see DB_ENV->set_alloc() for more information), they are used to allocate the memory;
otherwise, the standard C library malloc(3) is used. The caller is responsible for deallocating the
memory. To deallocate the memory, free the memory reference; references inside the returned memory
need not be individually freed.

Log cursor handles (returned by the DB_ENV->log_cursor() method) may have open file descriptors for
log files in the database environment. Also, the Berkeley DB interfaces to the database environment
logging subsystem (for example, DB_ENV->log_put() and DB_TXN->abort()) may allocate log cursors
and have open file descriptors for log files as well. On operating systems where filesystem related
system calls (for example, rename and unlink on Windows/NT) can fail if a process has an open file
descriptor for the affected file, attempting to move or remove the log files listed by

DB_ENV- >l og_ar chi ve() may fail. All Berkeley DB internal use of log cursors operates on active log files
only and furthermore, is short-lived in nature. So, an application seeing such a failure should be
restructured to close any open log cursors it may have, and otherwise to retry the operation until it
succeeds. (Although the latter is not likely to be necessary; it is hard to imagine a reason to move or
rename a log file in which transactions are being logged or aborted.)

See db_archive for more information on database archival procedures.

The DB_ENV- >l og_ar chi ve() method is the underlying method used by the db_archive utility. See the
db_archive utility source code for an example of using DB_ENV- >| og_ar chi ve() in a IEEE/ANSI Std 1003.1
(POSIX) environment.

The DB_ENV- >l og_ar chi ve() method returns a non-zero error value on failure and 0 on success.

Parameters

flags

The flags parameter must be set to 0 or by bitwise inclusively OR'ing together one or more of the
following values:

« DB_ARCH ABS

All pathnames are returned as absolute pathnames, instead of relative to the database home directory.

4/12/2010

DB C API Page 320

DB_ENV->log_archive()

Errors

Class

« DB_ARCH DATA

Return the database files that need to be archived in order to recover the database from catastrophic
failure. If any of the database files have not been accessed during the lifetime of the current log
files, DB_ENV- >l og_ar chi ve() will not include them in this list. It is also possible that some of the
files referred to by the log have since been deleted from the system.

The DB_ARCH DATA and DB_ARCH LOG fl ags are mutually exclusive.
DB_ARCH LOG

Return all the log filenames, regardless of whether or not they are in use.
The DB_ARCH_DATA and DB_ARCH LOG fl ags are mutually exclusive.
DB_ARCH_REMOVE

Remove log files that are no longer needed; no filenames are returned. Automatic log file removal
is likely to make catastrophic recovery impossible.

The DB_ARCH_REMOVE flag may not be specified with any other flag.

listp

The listp parameter references memory into which the allocated array of log or database filenames is
copied. If there are no filenames to return, the memory location to which listp refers will be set to
NULL.

The DB_ENV- >l og_ar chi ve() method may fail and return one of the following non-zero errors:
EINVAL

An invalid flag value or parameter was specified.

DB_ENV, DB_LOGC, DB_LSN

See Also

Logging Subsystem and Related Methods

4/12/2010

DB C API Page 321

DB_ENV->log_cursor()

DB_ENV->log_cursor()

#i ncl ude <db. h>

i nt
DB_ENV->| og_cursor (DB_ENV *dbenv, DB LOGC **cursorp, u_int32_t flags);

The DB_ENV- >l og_cursor () method returns a created log cursor.
The DB_ENV- >l og_cursor () method returns a non-zero error value on failure and 0 on success.
Parameters

cursorp

The cursorp parameter references memory into which a pointer to the created log cursor is copied.
flags
The flags parameter is currently unused, and must be set to 0.
Errors
The DB_ENV- >l og_cursor () method may fail and return one of the following non-zero errors:
EINVAL
An invalid flag value or parameter was specified.
Class
DB_ENV, DB_LOGC, DB_LSN
See Also

Logging Subsystem and Related Methods

4/12/2010 DB C API Page 322

DB_ENV->log_file()

DB_ENV->log_file()

#i ncl ude <db. h>

int
DB ENV->l og_fil e(DB_ENV *env,
const DB LSN *Isn, char *nanep, size_t len);

The DB_ENV->l og file() method maps DB_LSN structures to filenames, returning the name of the file
containing the record named by Isn.

This mapping of DB_LSN structures to files is needed for database administration. For example, a
transaction manager typically records the earliest DB_LSN needed for restart, and the database
administrator may want to archive log files to tape when they contain only DB_LSN entries before the
earliest one needed for restart.

The DB_ENV->l og file() method returns a non-zero error value on failure and 0 on success.

Parameters

Errors

Class

Isn
The Isn parameter is the DB_LSN structure for which a filename is wanted.
namep

The namep parameter references memory into which the name of the file containing the record named
by Isn is copied.

len

The len parameter is the length of the namep buffer in bytes. If namep is too short to hold the filename,
DB ENV->l og_file() will fail. (Log filenames are always 14 characters long.)

The DB_ENV->| og_fil () method may fail and return one of the following non-zero errors:
EINVAL

If supplied buffer was too small to hold the log filename; or if an invalid flag value or parameter was
specified.

DB_ENV, DB_LOGC, DB_LSN

See Also

Logging Subsystem and Related Methods

4/12/2010

DB C API Page 323

DB_ENV->log_flush()

DB_ENV->log_flush()

#i ncl ude <db. h>

i nt
DB_ENV->l og_flush(DB_ENV *env, const DB LSN *|sn);

The DB_ENV->| og_fl ush() method writes log records to disk.

The DB_ENV- >l og_fl ush() method returns a non-zero error value on failure and 0 on success.

Parameters

Isn

All log records with DB_LSN values less than or equal to the Isn parameter are written to disk. If Isn is
NULL, all records in the log are flushed.

Errors
The DB_ENV- >l og_f | ush() method may fail and return one of the following non-zero errors:
EINVAL
An invalid flag value or parameter was specified.
Class
DB_ENV, DB_LOGC, DB_LSN
See Also

Logging Subsystem and Related Methods

4/12/2010 DB C API Page 324

DB_ENV->log_get_config()

DB_ENV->log_get_config()

#i ncl ude <db. h>

int
DB_ENV->| og_get confi g(DB_ENV *dbenv, u_int32_t which, int *onoffp);

The DB_ENV- >l og_get config() method returns whether the specified which parameter is currently
set or not. You can manage this value using the DB_ENV->log_set_config() method.

The DB_ENV- >l og_get config() method may be called at any time during the life of the application.

The DB_ENV- >l og_get config() method returns a non-zero error value on failure and 0 on success.

Parameters

which

The which parameter is the message value for which configuration is being checked. Must be set to
one of the following values:

» DB LOG DI RECT
System buffering is turned off for Berkeley DB log files to avoid double caching.
» DB LOG DSYNC

Berkeley DB is configured to flush log writes to the backing disk before returning from the write
system call, rather than flushing log writes explicitly in a separate system call, as necessary.

« DB_LOG AUTO REMOVE
Berkeley DB automatically removes log files that are no longer needed.
e DB LOG I N MEMORY

Transaction logs are maintained in memory rather than on disk. This means that transactions exhibit
the ACI (atomicity, consistency, and isolation) properties, but not D (durability).

o DB LOG ZERO
All pages of a log file are zeroed when that log file is created.
onoffp

The onoffp parameter references memory into which the configuration of the specified which parameter
is copied.

If the returned onoff value is zero, the parameter is off; otherwise, on.

4/12/2010

DB C API Page 325

DB_ENV->log_get_config()

Class
DB_ENV
See Also

Logging Subsystem and Related Methods, DB_ENV->log_set_config()

4/12/2010 DB C API Page 326

DB_ENV->log_printf()

DB_ENV->log_printf()

#i ncl ude <db. h>

int
DB_ENV->l og_printf(DB_ENV *env, DB TXN *txnid, const char *fnt, ...);

The DB_ENV->| og_printf() method appends an informational message to the Berkeley DB database
environment log files.

The DB_ENV->l og_printf() method allows applications to include information in the database
environment log files, for later review using the db_printlog utility. This method is intended for
debugging and performance tuning.

The DB_ENV->l og_printf() method returns a non-zero error value on failure and 0 on success.
Parameters
txnid

If the logged message refers to an application-specified transaction, the txnid parameter is a transaction
handle returned from DB_ENV->txn_begin(); otherwise NULL.

fmt
A format string that specifies how subsequent arguments (or arguments accessed via the variable-length
argument facilities of stdarg(3)) are converted for output. The format string may contain any formatting
directives supported by the underlying C library vsnprintf(3) function.

Errors
The DB_ENV->l og_printf() method may fail and return one of the following non-zero errors:
EINVAL
An invalid flag value or parameter was specified.

Class
DB_ENV, DB_LOGC, DB_LSN

See Also

Logging Subsystem and Related Methods

4/12/2010 DB C API Page 327

DB_ENV->log_put()

DB_ENV->log_put()

#i ncl ude <db. h>

i nt
DB_ENV->| og_put (DB_ENV *env,
DB LSN *lsn, const DBT *data, u_int32_t flags);

The DB_ENV- >l og_put () method appends records to the log. The DB_LSN of the put record is returned
in the Isn parameter.

The DB_ENV- >l og_put () method returns a non-zero error value on failure and 0 on success.

Parameters

Errors

Class

data
The data parameter is the record to write to the log.

The caller is responsible for providing any necessary structure to data. (For example, in a write-ahead
logging protocol, the application must understand what part of data is an operation code, what part
is redo information, and what part is undo information. In addition, most transaction managers will
store in data the DB_LSN of the previous log record for the same transaction, to support chaining back
through the transaction’s log records during undo.)

flags
The flags parameter must be set to 0 or the following value:
o DB FLUSH

The log is forced to disk after this record is written, guaranteeing that all records with DB_LSN values
less than or equal to the one being "put” are on disk before DB_ENV- >l og_put () returns.

Isn

The Isn parameter references memory into which the DB_LSN of the put record is copied.

The DB_ENV- >l og_put () method may fail and return one of the following non-zero errors:
EINVAL

If the record to be logged is larger than the maximum log record; or if an invalid flag value or parameter
was specified.

DB_ENV, DB_LOGC, DB_LSN

4/12/2010

DB C API Page 328

DB_ENV->log_put()

See Also

Logging Subsystem and Related Methods

4/12/2010 DB C API Page 329

DB_ENV->log_set_config()

DB_ENV->log_set_config()

#i ncl ude <db. h>

i nt
DB_ENV->| og_set config(DB_ENV *dbenv, u_int32_t flags, int onoff);

The DB_ENV- >l og_set _config() method configures the Berkeley DB logging subsystem.

The DB_ENV->| og_set config() method configures a database environment, not only operations
performed using the specified DB_ENV handle.

The DB_ENV->| og_set config() method may be called at any time during the life of the application.

The DB_ENV- >l og_set _config() method returns a non-zero error value on failure and 0 on success.

Parameters

flags

The flags parameter must be set by bitwise inclusively OR'ing together one or more of the following
values:

« DB_LOG DI RECT

Turn off system buffering of Berkeley DB log files to avoid double caching.

Calling DB_ENV->| 0og_set _confi g() with the DB_LOG_DIRECT flag only affects the specified DB_ENV
handle (and any other Berkeley DB handles opened within the scope of that handle). For consistent
behavior across the environment, all DB_ENV handles opened in the environment must either set the
DB_LOG_DIRECT flag or the flag should be specified in the DB_CONFIG configuration file.

The DB_LOG DI RECT flag may be used to configure Berkeley DB at any time during the life of the
application.

DB_LOG DSYNC

Configure Berkeley DB to flush log writes to the backing disk before returning from the write system
call, rather than flushing log writes explicitly in a separate system call, as necessary. This is only

available on some systems (for example, systems supporting the IEEE/ANSI Std 1003.1 (POSIX) standard
O_DSYNC flag, or systems supporting the Windows FILE_FLAG_WRITE_THROUGH flag). This flag may
result in inaccurate file modification times and other file-level information for Berkeley DB log files.
This flag may offer a performance increase on some systems and a performance decrease on others.

Calling DB_ENV- >l og_set config() with the DB_LOG_DSYNC flag only affects the specified DB_ENV
handle (and any other Berkeley DB handles opened within the scope of that handle). For consistent
behavior across the environment, all DB_ENV handles opened in the environment must either set the
DB_LOG_DSYNC flag or the flag should be specified in the DB_CONFIG configuration file.

The DB_LOG DSYNC flag may be used to configure Berkeley DB at any time during the life of the
application.

4/12/2010

DB C API Page 330

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

DB_ENV->log_set_config()

» DB LOG AUTO REMOVE
If set, Berkeley DB will automatically remove log files that are no longer needed.
Automatic log file removal is likely to make catastrophic recovery impossible.

Replication applications will rarely want to configure automatic log file removal as it increases the
likelihood a master will be unable to satisfy a client's request for a recent log record.

Calling DB_ENV->| og_set _confi g() with the DB_LOG AUTO REMOVE flag affects the database environment,
including all threads of control accessing the database environment.

The DB_LOG AUTO REMOVE flag may be used to configure Berkeley DB at any time during the life of
the application.

« DB_LOG | N_VEMORY

If set, maintain transaction logs in memory rather than on disk. This means that transactions exhibit
the ACI (atomicity, consistency, and isolation) properties, but not D (durability); that is, database
integrity will be maintained, but if the application or system fails, integrity will not persist. All
database files must be verified and/or restored from a replication group master or archival backup
after application or system failure.

When in-memory logs are configured and no more log buffer space is available, Berkeley DB methods
may return an additional error value, DB LOG BUFFER FULL. When choosing log buffer and file sizes
for in-memory logs, applications should ensure the in-memory log buffer size is large enough that
no transaction will ever span the entire buffer, and avoid a state where the in-memory buffer is full
and no space can be freed because a transaction that started in the first log "file" is still active.

Calling DB_ENV- >l og_set config() with the DB LOG | N MEMORY flag affects the database environment,
including all threads of control accessing the database environment.

The DB_LOG | N_MEMORY flag may be used to configure Berkeley DB only before the DB_ENV->open()
method is called.

« DB_LOG ZERO

If set, zero all pages of a log file when that log file is created. This has shown to provide greater
transaction throughput in some environments. The log file will be zeroed by the thread which needs
to re-create the new log file. Other threads may not write to the log file while this is happening.

Calling DB_ENV->l og_set config() with the DB_LOG ZERO flag affects only the current environment
handle.

The DB_LOG ZERO flag may be used to configure Berkeley DB at any time.
onoff

If the onoff parameter is zero, the specified flags are cleared; otherwise they are set.

4/12/2010 DB C API Page 331

DB_ENV->log_set_config()

Errors
The DB_ENV- >l og_set config() method may fail and return one of the following non-zero errors:
EINVAL
An invalid flag value or parameter was specified.
Class
DB_ENV
See Also

Logging Subsystem and Related Methods

4/12/2010 DB C API Page 332

DB_ENV->log_stat()

DB_ENV->log_stat()

#i ncl ude <db. h>

i nt
DB_ENV->| og_stat (DB _ENV *env, DB LOG STAT **statp, u_int32_t flags);

The DB_ENV->| og_stat () method returns the logging subsystem statistics.

The DB_ENV- >| og_st at () method creates a statistical structure of type DB_LOG STAT and copies a pointer
to it into a user-specified memory location.

Statistical structures are stored in allocated memory. If application-specific allocation routines have
been declared (see DB_ENV->set_alloc() for more information), they are used to allocate the memory;
otherwise, the standard C library malloc(3) is used. The caller is responsible for deallocating the
memory. To deallocate the memory, free the memory reference; references inside the returned memory
need not be individually freed.

The following DB_LOG STAT fields will be filled in:

u_int32_t st_magic;
The magic number that identifies a file as a log file.
e u_int32_t st_version;
The version of the log file type.
 int st_mode;
The mode of any created log files.
o u_int32_t st_lIg_bsize;
The in-memory log record cache size.
e u_int32_t st_lg_size;
The log file size.
o uintmax_t st_record;
The number of records written to this log.
o u_int32_t st_w_mbytes;
The number of megabytes written to this log.
e u_int32_t st_w_bytes;

The number of bytes over and above st_w_mbytes written to this log.

4/12/2010

DB C API Page 333

DB_ENV->log_stat()

u_int32_t st_wc_mbytes;
The number of megabytes written to this log since the last checkpoint.

u_int32_t st_wc_bytes;

The number of bytes over and above st_wc_mbytes written to this log since the last checkpoint.

uintmax_t st_wcount;
The number of times the log has been written to disk.

uintmax_t st_wcount_fill;

The number of times the log has been written to disk because the in-memory log record cache filled

up.
uintmax_t st_rcount;

The number of times the log has been read from disk.

uintmax_t st_scount;

The number of times the log has been flushed to disk.

u_int32_t st_cur_file;

The current log file number.

u_int32_t st_cur_offset;

The byte offset in the current log file.

u_int32_t st_disk_file;

The log file number of the last record known to be on disk.
u_int32_t st_disk_offset;

The byte offset of the last record known to be on disk.
u_int32_t st_maxcommitperflush;

The maximum number of commits contained in a single log flush.

u_int32_t st_mincommitperflush;

The minimum number of commits contained in a single log flush that contained a commit.

roff_t st_regsize;

The size of the log region, in bytes.

4/12/2010

DB C API

Page 334

DB_ENV->log_stat()

e uintmax_t st_region_wait;

The number of times that a thread of control was forced to wait before obtaining the log region
mutex.

« uintmax_t st_region_nowait;
The number of times that a thread of control was able to obtain the log region mutex without waiting.
The DB_ENV->| og_stat () method may not be called before the DB_ENV->open() method is called.
The DB_ENV- >l og_stat () method returns a non-zero error value on failure and 0 on success.
Parameters
flags
The flags parameter must be set to 0 or the following value:
« DB STAT CLEAR
Reset statistics after returning their values.
statp

The statp parameter references memory into which a pointer to the allocated statistics structure is
copied.

Errors
The DB_ENV- >l og_st at () method may fail and return one of the following non-zero errors:
EINVAL
An invalid flag value or parameter was specified.
Class
DB_ENV, DB_LOGC, DB_LSN
See Also

Logging Subsystem and Related Methods

4/12/2010 DB C API Page 335

DB_ENV->log_stat_print()

DB_ENV->log_stat_print()

#i ncl ude <db. h>

i nt
DB ENV->l og_stat print(DB_ENV *env, u_int32_t flags);

The DB_ENV->| og_stat _print() method displays the logging subsystem statistical information, as
described for the DB_ENV- >l og_st at () method. The information is printed to a specified output channel
(see the DB_ENV->set_msgfile() method for more information), or passed to an application callback
function (see the DB_ENV->set_msgcall() method for more information).

The DB_ENV- >l og_stat _print () method may not be called before the DB_ENV->open() method is called.

The DB_ENV- >l og_stat _print() method returns a non-zero error value on failure and 0 on success.
Parameters

flags

The flags parameter must be set to 0 or by bitwise inclusively OR'ing together one or more of the
following values:

« DB STAT ALL
Display all available information.
o DB STAT CLEAR
Reset statistics after displaying their values.
Class
DB_ENV, DB_LOGC, DB_LSN
See Also

Logging Subsystem and Related Methods

4/12/2010 DB C API Page 336

DB_ENV->set_lg_bsize()

DB_ENV->set_Ilg_bsize()

#i ncl ude <db. h>

i nt
DB _ENV->set | g_bsi ze(DB_ENV *dbenv, u_int32_t |g_bsize);

Set the size of the in-memory log buffer, in bytes.

When the logging subsystem is configured for on-disk logging, the default size of the in-memory log
buffer is approximately 32KB. Log information is stored in-memory until the storage space fills up or
transaction commit forces the information to be flushed to stable storage. In the presence of long-running
transactions or transactions producing large amounts of data, larger buffer sizes can increase throughput.

When the logging subsystem is configured for in-memory logging, the default size of the in-memory
log buffer is 1MB. Log information is stored in-memory until the storage space fills up or transaction
abort or commit frees up the memory for new transactions. In the presence of long-running transactions
or transactions producing large amounts of data, the buffer size must be sufficient to hold all log
information that can accumulate during the longest running transaction. When choosing log buffer and
file sizes for in-memory logs, applications should ensure the in-memory log buffer size is large enough
that no transaction will ever span the entire buffer, and avoid a state where the in-memory buffer is
full and no space can be freed because a transaction that started in the first log "file" is still active.

The database environment's log buffer size may also be configured using the environment's DB_CONFIG
file. The syntax of the entry in that file is a single line with the string "set_lg_bsize", one or more
whitespace characters, and the size in bytes. Because the DB_CONFIG file is read when the database
environment is opened, it will silently overrule configuration done before that time.

The DB_ENV->set _| g_bsi ze() method configures a database environment, not only operations performed
using the specified DB_ENV handle.

The DB_ENV- >set _| g_bsi ze() method may not be called after the DB_ENV->open() method is called.
If the database environment already exists when DB_ENV->open() is called, the information specified
to DB _ENV->set | g_bsi ze() will be ignored.

The DB_ENV->set | g _bsi ze() method returns a non-zero error value on failure and 0 on success.
Parameters
Ig_bsize
The lg_bsize parameter is the size of the in-memory log buffer, in bytes.
Errors
The DB_ENV->set | g _bsi ze() method may fail and return one of the following non-zero errors:
EINVAL

An invalid flag value or parameter was specified.

4/12/2010 DB C API Page 337

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

DB_ENV->set_lg_bsize()

Class
DB_ENV, DB_LOGC, DB_LSN
See Also

Logging Subsystem and Related Methods

4/12/2010 DB C API Page 338

DB_ENV->set_lg_dir()

DB_ENV->set_lIlg_dir()

#i ncl ude <db. h>

i nt
DB_ENV->set | g_dir(DB_ENV *dbenv, const char *dir);

The path of a directory to be used as the location of logging files. Log files created by the Log Manager
subsystem will be created in this directory.

If no logging directory is specified, log files are created in the environment home directory. See Berkeley
DB File Naming for more information.

For the greatest degree of recoverability from system or application failure, database files and log
files should be located on separate physical devices.

The database environment's logging directory may also be configured using the environment's DB_CONFIG
file. The syntax of the entry in that file is a single line with the string "set_lg_dir", one or more
whitespace characters, and the directory name. Because the DB_CONFIG file is read when the database
environment is opened, it will silently overrule configuration done before that time.

The DB_ENV- >set _| g_di r () method configures operations performed using the specified DB_ENV handle,
not all operations performed on the underlying database environment.

The DB_ENV->set | g dir() method may not be called after the DB_ENV->open() method is called. If
the database environment already exists when DB_ENV->open() is called, the information specified to
DB ENV->set | g_dir() must be consistent with the existing environment or corruption can occur.

The DB_ENV->set | g dir() method returns a non-zero error value on failure and 0 on success.

Parameters

Errors

Class

dir
The dir parameter is the directory used to store the logging files.

When using a Unicode build on Windows (the default), the dir argument will be interpreted as a UTF-8
string, which is equivalent to ASCII for Latin characters.

The DB_ENV->set | g dir() method may fail and return one of the following non-zero errors:
EINVAL

If the method was called after DB_ENV->open() was called; or if an invalid flag value or parameter was
specified.

DB_ENV, DB_LOGC, DB_LSN

4/12/2010

DB C API Page 339

../../programmer_reference/env_naming.html
../../programmer_reference/env_naming.html
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

DB_ENV->set_lg_dir()

See Also

Logging Subsystem and Related Methods

4/12/2010 DB C API Page 340

DB_ENV->set_lg_filemode()

DB_ENV->set_Ig_filemode()

#i ncl ude <db. h>

i nt
DB ENV->set | g fil emode(DB_ENV *dbenv, int |g filenode);

Set the absolute file mode for created log files. This method is only useful for the rare Berkeley DB
application that does not control its umask value.

Normally, if Berkeley DB applications set their umask appropriately, all processes in the application
suite will have read permission on the log files created by any process in the application suite. However,
if the Berkeley DB application is a library, a process using the library might set its umask to a value
preventing other processes in the application suite from reading the log files it creates. In this rare
case, the DB ENV->set | g fil enode() method can be used to set the mode of created log files to an
absolute value.

The database environment's log file mode may also be configured using the environment's DB_CONFIG
file. The syntax of the entry in that file is a single line with the string "set_lg_filemode", one or more
whitespace characters, and the absolute mode of created log files. Because the DB_CONFIG file is read
when the database environment is opened, it will silently overrule configuration done before that time.

The DB_ENV->set | g fil emode() method configures a database environment, not only operations
performed using the specified DB_ENV handle.

The DB_ENV->set | g_fil enode() method may be called at any time during the life of the application.
The DB_ENV->set | g fil ennde() method returns a non-zero error value on failure and 0 on success.
Parameters
Ig_filemode
The lg_filemode parameter is the absolute mode of the created log file.
Class
DB_ENV, DB_LOGC, DB_LSN
See Also

Logging Subsystem and Related Methods

4/12/2010 DB C API Page 341

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

DB_ENV->set_lg_max()

DB_ENV->set_Ilg_max()

#i ncl ude <db. h>

i nt
DB_ENV->set | g_max(DB_ENV *dbenv, u_int32_t |g_max);

Set the maximum size of a single file in the log, in bytes. Because DB_LSN file offsets are unsigned
four-byte values, the set value may not be larger than the maximum unsigned four-byte value.

When the logging subsystem is configured for on-disk logging, the default size of a log file is 10MB.

When the logging subsystem is configured for in-memory logging, the default size of a log file is 256KB.
In addition, the configured log buffer size must be larger than the log file size. (The logging subsystem
divides memory configured for in-memory log records into "files", as database environments configured
for in-memory log records may exchange log records with other members of a replication group, and
those members may be configured to store log records on-disk.) When choosing log buffer and file sizes
for in-memory logs, applications should ensure the in-memory log buffer size is large enough that no
transaction will ever span the entire buffer, and avoid a state where the in-memory buffer is full and
no space can be freed because a transaction that started in the first log "file" is still active.

See Log File Limits for more information.

The database environment's log file size may also be configured using the environment's DB_CONFIG
file. The syntax of the entry in that file is a single line with the string "set_lg_max", one or more
whitespace characters, and the size in bytes. Because the DB_CONFIG file is read when the database
environment is opened, it will silently overrule configuration done before that time.

The DB_ENV->set | g_max() method configures a database environment, not only operations performed
using the specified DB_ENV handle.

The DB_ENV->set _| g_max() method may be called at any time during the life of the application.

If no size is specified by the application, the size last specified for the database region will be used,
or if no database region previously existed, the default will be used.

The DB_ENV->set | g _max() method returns a non-zero error value on failure and 0 on success.
Parameters

Ilg_max

The Ig_max parameter is the size of a single log file, in bytes.
Errors

The DB_ENV- >set _| g_max() method may fail and return one of the following non-zero errors:

4/12/2010 DB C API Page 342

../../programmer_reference/log_limits.html
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

DB_ENV->set_lg_max()

EINVAL

If the size of the log file is less than four times the size of the in-memory log buffer; the specified log
file size was too large; or if an invalid flag value or parameter was specified.

Class
DB_ENV, DB_LOGC, DB_LSN
See Also

Logging Subsystem and Related Methods

4/12/2010 DB C API Page 343

DB_ENV->set_lg_regionmax()

DB_ENV->set_lg_regionmax()

#i ncl ude <db. h>

i nt
DB_ENV->set | g_regi onmax(DB_ENV *dbenv, u_int32_t |g_regi onnax);

Set the size of the underlying logging area of the Berkeley DB environment, in bytes. By default, or if
the value is set to 0, the minimum region size is used, approximately 128KB. The log region is used to
store filenames, and so may need to be increased in size if a large number of files will be opened and
registered with the specified Berkeley DB environment's log manager.

The database environment's log region size may also be configured using the environment's DB_CONFIG
file. The syntax of the entry in that file is a single line with the string "set_lg_regionmax”, one or more
whitespace characters, and the size in bytes. Because the DB_CONFIG file is read when the database
environment is opened, it will silently overrule configuration done before that time.

The DB_ENV->set _| g_regi onmax() method configures a database environment, not only operations
performed using the specified DB_ENV handle.

The DB_ENV- >set _| g_regi onmax() method may not be called after the DB_ENV->open() method is called.
If the database environment already exists when DB_ENV->open() is called, the information specified
to DB_ENV- >set | g regi onmax() will be ignored.

The DB_ENV- >set _| g_regi onmax() method returns a non-zero error value on failure and 0 on success.
Parameters

Ig_regionmax

The Ig_regionmax parameter is the size of the logging area in the Berkeley DB environment, in bytes.
Errors

The DB_ENV->set | g regi onmax() method may fail and return one of the following non-zero errors:

EINVAL
If the method was called after DB_ENV->open() was called; or if an invalid flag value or parameter was
specified.
Class
DB_ENV, DB_LOGC, DB_LSN
See Also

Logging Subsystem and Related Methods

4/12/2010 DB C API Page 344

../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG
../../programmer_reference/env_db_config.html#env_db_config.DB_CONFIG

The DB_LOGC Handle

The DB_LOGC Handle

#i ncl ude <db. h>

typedef struct _ typedef struct _ db |og_cursor DB LOGC

The DB_LOGC object is the handle for a cursor into the log files, supporting sequential access to the
records stored in log files. The handle is not free-threaded. Once the DB_LOGC->close() method is
called, the handle may not be accessed again, regardless of that method's return.

For more information, see the DB_LSN handle.

4/12/2010

DB C API Page 345

DB_LOGC->close()

DB_LOGC->close()

#i ncl ude <db. h>

i nt
DB _LOGC->cl ose(DB_LOGC *cursor, u_int32_t flags);

The DB_LOGC >cl ose() method discards the log cursor. After DB_LOGC- >cl ose() has been called, regardless
of its return, the cursor handle may not be used again.

The DB_LOGC >cl ose() method returns a non-zero error value on failure and 0 on success.
Parameters

flags

The flags parameter is currently unused, and must be set to 0.
Errors

The DB_LOGC- >cl ose() method may fail and return one of the following non-zero errors:

EINVAL

If the cursor is already closed; or if an invalid flag value or parameter was specified.
Class

DB_ENV, DB_LOGC, DB_LSN
See Also

Logging Subsystem and Related Methods

4/12/2010 DB C API Page 346

DB_LOGC->get()

DB_LOGC->get()

#i ncl ude <db. h>

int
DB _LOGC- >get (DB_LOGC *| ogc, DB LSN *Isn, DBT *data, u_int32_t flags);

The DB_LOGC >get () method returns records from the log.

Unless otherwise specified, the DB_LOGC- >get () method returns a non-zero error value on failure and
0 on success.

Parameters

data

The data field of the data structure is set to the record retrieved, and the size field indicates the
number of bytes in the record. See DBT for a description of other fields in the data structure. The
DB_DBT_MALLOC, DB_DBT_REALLOC and DB_DBT_USERMEM flags may be specified for any DBT used
for data retrieval.

flags
The flags parameter must be set to one of the following values:

« DB_CURRENT

Return the log record to which the log currently refers.
DB_FI RST

The first record from any of the log files found in the log directory is returned in the data parameter.
The Isn parameter is overwritten with the DB_LSN of the record returned.

The DB_LOGC- >get () method will return DB_NOTFOUND if DB_FIRST is set and the log is empty.
DB_LAST

The last record in the log is returned in the data parameter. The Isn parameter is overwritten with
the DB_LSN of the record returned.

The DB_LOGC >get () method will return DB_NOTFOUND if DB_LAST is set and the log is empty.
DB_NEXT

The current log position is advanced to the next record in the log, and that record is returned in the
data parameter. The Isn parameter is overwritten with the DB_LSN of the record returned.

If the cursor has not been initialized via DB_FIRST, DB_LAST, DB_SET, DB_NEXT, or DB_PREV,
DB_LOGC- >get () will return the first record in the log.

4/12/2010

DB C API Page 347

../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND
../../programmer_reference/program_errorret.html#program_errorret.DB_NOTFOUND

DB_LOGC->get()

Errors

Class

The DB_LOGC- >get () method will return DB_NOTFOUND if DB_NEXT is set and the last log record has
already been returned or the log is empty.

« DB_PREV

The current log position is advanced to the previous record in the log, and that record is returned
in the data parameter. The Isn parameter is overwritten with the DB_LSN of the record retu